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ABSTRACT

Sound synthesiser controls typically correspond to techni-
cal parameters of signal processing algorithms rather than
intuitive sound descriptors that relate to human perception
of sound. This makes it difficult to realise sound ideas in
a straightforward way. Cross-modal mappings, for exam-
ple between gestures and sound, have been suggested as a
more intuitive control mechanism. A large body of research
shows consistency in human associations between sounds
and shapes. However, the use of drawings to drive sound
synthesis has not been explored to its full extent. This pa-
per presents an exploratory study that asked participants
to sketch visual imagery of sounds with a monochromatic
digital drawing interface, with the aim to identify different
representational approaches and determine whether tim-
bral sound characteristics can be communicated reliably
through visual sketches. Results imply that the develop-
ment of a synthesiser exploiting sound-shape associations
is feasible, but a larger and more focused dataset is needed
in followup studies.

1. INTRODUCTION

Timbre is an increasingly significant component of modern
music production, often serving as a distinguishing char-
acteristic of an artist’s style or genre. Blake [1] provides
an example by describing how rock bands can be divided
into sub-genres by analysing timbre rather than chord pro-
gression, referencing the groups My Bloody Valentine and
U2. Despite humans’ capability of perceiving very sub-
tle differences in timbre [2] it is still poorly understood by
researchers [3, 4, 5]. Crafting the “right” sound is an im-
portant part of electronic music production, but synthesiser
parameters typically correspond to a technical function re-
lated to signal processing, rather than a concept related to
human perception, making it difficult to realise sound ideas
in a straightforward way. The aim of this research is to de-
velop a sketch-based sound synthesiser that takes simple
drawings as input to provide a simple, intuitive control in-
formed by cross-modal associations between sounds and
shapes. The development will be informed by the results
of a study, presented in this paper, that explores how par-
ticipants represent timbre with a digital drawing interface.
This section introduces relevant research into sound-shape
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associations and presents related work about sound synthe-
sis control. Sections 2, 3 and 4 describe the design, analy-
sis and results of the study. The discussion in Section 5 is
followed by a conclusion in Section 6.

1.1 Background on Sound-Shape Associations

Strong evidence suggests that a majority of people think of
sound in a visual way to some extent that references colour,
brightness, shapes and contour [6]. In the 1920s, Köhler
discovered that humans associate the made-up word takete
with sharp, jagged shapes, and maluma with soft, round
shapes [7]. Similar findings were made with the words
boubou and kiki [8] and generally among all phonemes [9].
This effect has been observed across cultures [10, 11, 12],
age groups including toddlers [13] and, to some extent,
with the visually impaired [14]. Adeli et al. [15] and Grill
et al. [16] found similar associations between shapes and
musical instruments or abstract sonic textures respectively.
Focusing on pitch, loudness and tempo, Küssner et al. [17]
asked participants to draw their representations of sound
rather than selecting existing shapes. They found that rep-
resentations are not only influenced by musical structure,
but also by a participant’s music proficiency. Engeln and
Groh [18] loosely classified drawings of sounds that were
re-synthesised from spectrograms into real-world associa-
tions like scenes, actions or emotions, abstract shapes and
structures or references to audio visualisations like wave-
forms and amplitude envelopes.

1.2 Related Work

A variety of strategies has been proposed to improve the
intuitiveness of sound synthesisers. Low-level synthesis
parameters can be mapped to a smaller number of high-
level descriptors that either correspond to concepts of hu-
man perception as implemented in the FeatSynth frame-
work [19] or describe the actions and objects that produce
a sound, as seen with the impact sound synthesiser devel-
oped at the PRISM laboratory [20, 21]. Further, a dif-
ferent input modality like gestures [22] or voice [23] al-
lows for a more intuitive control, potentially affording the
simultaneous manipulation of multiple parameters. This
can be particularly helpful for the exploration and draft-
ing of sound ideas. Timbre visualisations, as mentioned
in section 1.1, are more frequently used in a sound re-
trieval context [24], but have also been adapted for syn-
thesis, for example by Sound Mosaic [25] which allows
users to manipulate shapes to drive sound synthesis. Knees
and Andersen [26] explored how drawings could be used
for sound retrieval with a non-functioning prototype, an
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approach more commonly found in image search applica-
tions [27, 28]. A major challenge of developing a sketch-
based sound synthesiser is to find meaningful mappings
between visual features and synthesis parameters.

2. METHODS AND MATERIAL

This section describes the design of an exploratory study
that investigates how participants represent sound stimuli
intuitively through free-form sketching with a digital draw-
ing interface. The following hypotheses were put forward:

• There will be some level of agreement between par-
ticipants on how to sketch a sound.

• Correlations between quantitative sketch and audio
features will align with the sound-shape associations
described in Section 1.1.

• A participant’s music proficiency and the sound type
will have an influence on the representational ap-
proach, but overall abstract sketches will be pro-
duced more frequently than depictions of real-world
associations.

2.1 Participants

Twenty-eight participants were recruited through mailing
lists and in person at the School of Electronic Engineer-
ing and Computer Science at Queen Mary University of
London. This group was divided equally by gender (14 fe-
male, 14 male), 25 were adults below the age of 33 (three
between 34 and 49), 22 had a Western background (16 Eu-
rope, 4 North America, 2 South America) and 5 an Eastern
background (4 China, 1 India) with one participant prefer-
ring not to disclose this information. As described in Sec-
tion 2.4, participants were divided by music proficiency
resulting in 14 musicians and 14 non-musicians.

2.2 Stimuli

A total of ten timbrally dissimilar sounds were selected fol-
lowing the research of Adeli et al. [15] and Grill et al. [16]
ranging from musical instruments (Piano, Strings, Electric
Guitar) and environmental sounds (Impact) to synthesised
pads (Telephonic, Subbass) and abstract textures (Noise,
String Grains, Crackles, Processed Guitar). 1 All sound
stimuli are monophonic, normalised for equal loudness,
pitched to the MIDI note C3 and last eight seconds includ-
ing trailing silence to mark a clear endpoint during looped
playback. The perceived base frequency may vary due to
prominent harmonics.

2.3 Apparatus

The drawing interface was implemented in p5.js and runs
in a web-browser. White strokes can be drawn on a
750x750 pixel canvas with a black background that sepa-
rates it from the rest of the page. Stroke colour or width
cannot be changed and sketches cannot be modified or
erased. This design was chosen to encourage participants
to follow their intuition and focus on shape rather than vi-
sual texture and colour. Clicking and dragging the mouse

1 All sounds can be accessed online together with the sketches drawn
by participants during the experiment https://bit.ly/3ta6crU.

cursor starts a sketch and the timestamped cursor position
is recorded consecutively while sketching. The study was
conducted in person using the trackpad on a 15” MacBook
Pro and a pair of Beyerdynamic DT 770 Pro headphones
in calm, indoor locations.

2.4 Procedure

Participants first completed a questionnaire that included
an excerpt of the Gold MSI framework [29] and was used
to determine their music proficiency. 2 Participants were
asked to familiarise themselves with the drawing interface
without audio before they were presented with the sound
stimuli. The study intended to encourage a spontaneous re-
sponse, therefore no information about the range of sounds
was provided and participants were instructed to sketch
what they believed to represent each sound stimulus the
best. Looped playback started automatically with the op-
tion to pause/resume. Each sound was played twice in a
randomised order resulting in a total of twenty sketches
per participant. After completion, a short semi-structured
interview was conducted and audio recorded asking par-
ticipants how they approached the task and whether they
found it difficult. No time limit was given and the study
typically took twenty to thirty minutes to complete. The
study setup can be accessed online. 3

3. ANALYSIS

This section describes the qualitative and quantitative
methods used to analyse the collected data.

3.1 Interview Analysis

The interview analysis aimed to identify and summarise
different approaches to the task and quantify reported dif-
ficulty. Interviews were transcribed and thematic analy-
sis [30] was used to find reoccurring themes. Task diffi-
culty was coded into hard/neutral/easy depending on the
response to the question, “How difficult did you find the
task?”.

3.2 Sketch Categorisation

Section 2 introduced the hypothesis that participants will
predominately produce abstract sketches. This can be
tested by dividing sketches into high-level categories that
refer to their representational approach. In order to min-
imise bias, sketches were categorised in an open card sort-
ing study by 6 participants (4 female, 3 musicians) who did
not take part in the main study. They were asked to create
a reasonable number of categories (three to ten was rec-
ommended) and write a short description for each of them.
The study was completed remotely within three hours on
participants’ devices. 4 Results were reduced to two di-
mensions with principal component analysis (PCA) and
clustered with the K-Means algorithm. The silhouette co-
efficient [31], a measure of cluster goodness, was calcu-
lated to find the most suitable number of clusters between
three and ten. Clusters were annotated and named with the

2 A participant was categorised as a musician if they scored above av-
erage and reported involvement in musical activity.

3 Study setup: https://bit.ly/3j3FkVO
4 Card sorting instructions: https://youtu.be/LXTlnaAciWw
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Grains Lines Object/Scenes Chaotic/Jagged Radiating
Small, repeated, grainy,

spots, multiple components,

layers, abstract, distinct

round, soft, continuous,

jagged, irregular, simple,

single, lines

real-life objects, environ-

ment, actions or feelings,

abstract structures

chaotic, intense, jagged,

multiple layers, single

objects

round, circular, spiral,

sharp, shaking, distinct

objects, radiating, natural

Table 1. Sketch categories with examples. Category names and keywords were obtained through thematic analysis as described in Section 3.2.
Objects/Scenes mainly refers to real-world associations while other categories highlight different abstract approaches, but category clusters might overlap
with a number of sketches showing characteristics of more than one category. Colours were inverted for better visibility.

help of keywords that were extracted from participants’ de-
scriptions using thematic analysis.

3.3 Sketch Feature Extraction

While sketch categories give an overview of the repre-
sentational approaches, a more detailed, quantitative set
of features is needed to compare sketches in detail and
find correlations with sound characteristics using statisti-
cal analyses described in Section 3.5. A number of fea-
tures can be calculated from the sketches’ data shape and
through simple arithmetic operations as demonstrated in
Equations 1, 2 and 3, whereN is the number of strokes in a
sketch and L, T and S are their average length, completion
time and drawing speed. The total number of points in the
kth stroke is described by nk. Each point has a position
xki

and timestamp tki
. The euclidean distance between

two points is described by d(p, q).

L =
1

N

N∑
k=1

nk∑
i=2

d
(
xki

, xki−1

)
(1)

T =
1

N

N∑
k=1

tknk
− tk1 (2)

S =
1

N

N∑
k=1

nk∑
i=2

d
(
xki

, xki−1

) 1

tknk
− tk1

(3)

Sound-shape associations are usually reported with re-
spect to a shape’s contour focusing on their “jaggedness”
or “roundness” [15, 16]. These attributes were quantified
by extracting corner points divided into obtuse, right and
acute angles [32] and curve points divided into wide and
narrow shape [33]. A qualitative review suggested that
sketches differ by the number of stroke intersections that
can be interpreted as the “noisiness” of a sketch. The num-
ber of intersections was determined using an adaptation of
Bresenham’s rasterisation algorithm [34]. Prior to extract-
ing features, the sketch data was cleaned by removing con-
secutive points with the same position and merging two
strokes if a starting point was within a five pixel distance
to an end point. The number of intersections, corner and
curve points is reported relative to the total stroke length of
a sketch. 5

5 A detailed summary of audio and sketch feature extraction can be
found at http://doi.org/10.5281/zenodo.4764351.

3.4 Audio Feature Extraction

In order to investigate sound-shape associations through
statistical analysis, the sound stimuli also have to be de-
scribed with quantitative features. This was accomplished
by computing the mean values of Centroid Frequency,
Spectral Flatness, Zero Crossing and Root Mean Square
Power (RMS) [35] for each sound using the Librosa library
with a FFT window size of 2048 and hop length of 512. In
addition, the timbre models proposed by Pearce et al. [36]
provided quantified measures of Hardness, Depth, Bright-
ness, Roughness, Warmth, Sharpness and Boominess. The
additional feature RMS Slope, describing how continuous
or intersected a sound is, was quantified by the slope be-
tween prominent extrema in the RMS envelope.

3.5 Statistical Analyses

Differences in sketch category counts between participant
groups and between sounds were computed using Pear-
son’s Chi-squared test and Cochran’s Q test respectively.
Spearman’s rank coefficient was used to find significant
correlations between audio features and mean sketch fea-
tures between all participants. To determine whether inter-
rater reliability of sound descriptions can be measured with
the sketch features introduced in Section 3.3, the ICC(2,k)
model 6 of the intraclass correlation coefficient (ICC) [37]
was deployed. Sketch features were first log-transformed
to meet the normal distribution assumption of the ICC.

4. RESULTS

This section presents the results of the interview analysis,
sketch categorisation, inter-rater reliability testing and cor-
relation between audio and sketch features.

4.1 Interview

Task difficulty was reported as easy/hard/neutral by 14/8/6
participants. Participants who felt that the task was easy
thought that “there was no right or wrong” (P4), “it was
just about being creative” (P15) and they did not have to
“achieve something” (P10). On the contrary, others found
it difficult to “think of sound in a very visual way” (P8)

6 For the ICC, sound stimuli were defined as subjects and sketch fea-
tures as measurements. Repeated sounds were considered separate sub-
jects.
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(P16). While some participants approached the task as an
intuitive, creative activity, others were concerned with es-
tablishing a consistent visual language. Difficulties arose
while deciding which sound characteristics to follow be-
cause “there are too many things to consider” like “bright-
ness or aggressiveness or how it [timbre] develops over
time” (P6). A consistent approach was difficult to maintain
because of a “great variety in the sounds” (P2). Some par-
ticipants reported that “complicated ones [sounds] sounded
like pictures, and then the simple ones [...] like piano notes
were a lot harder to draw” (P8) possibly because they “hear
[them] all the time” (P1), while other participants thought
that “it’s pretty straightforward because I know a piano
note more than others” (P5).

4.2 Sketch Categories

Figure 1. Absolute category counts by music proficiency

Figure 2. Relative category counts by sound stimulus

Analysis of the card sorting study described in Section
3.2 returned an optimal number of five categories that were
named: Chaotic/Jagged (172 sketches), Radiating (126),
Lines (120), Objects/Scenes (86) and Grains (56). De-
scriptive keywords and sketch examples for each category
can be found in Table 1. A maximal silhouette coeffi-
cient of 0.49 suggests that categories are distinguishable,
but not clearly separated which is also reflected by occa-
sionally overlapping keywords. Chi-squared test suggests
that non-musicians produce Objects/Scenes sketches more
often (χ2(1,N=28)=22.51 p<.0001) while musicians pro-
duce Lines sketches at a higher rate (χ2(1,N=28)=7.5
p<.01) possibly because this category contains sketches
that appear to reference audio visualisations like en-
velopes or waveforms. Category counts for Objects/Scenes
sketches significantly differ between sounds (χ2(9)=67.07
p<.0001) with post-hoc analysis revealing that Piano and
Impact show significantly higher counts than Noise, String
Grains and Processed Guitar (p<.01 for each pair).

Figure 3. Mean values and 95% CI of ICC(2,k) inter-rater reliabilities
for each sketch feature with evaluation guidelines proposed by Koo and
Li [37] (df1=19, df2=513, p<.01 for all features)

4.3 Inter-rater Reliability

As seen in Figure 3, reliability measures were good to ex-
cellent for Intersections and Acute Angels, poor to good for
Average Speed and moderate to good for all remaining fea-
tures within the 95% confidence interval (CI) suggesting
that some level of agreement exists between participants
on how to represent sounds visually and that it can be mea-
sured with the sketch features introduced in Section 3.3.

4.4 Feature Correlations

Figure 4. Spearman’s rank correlation coefficients between sketch and
audio features with annotated p-values: p<.05 (*), .01 (**), .001 (***)

Several significant correlations were found between
sketch and audio features. Acute Angles (11), Intersec-
tions (9) and Number of Strokes (8) show the highest
statistically significant (p<.05) number of strong (r>.6)
and very strong (r>.8) correlations with audio features.
The strongest correlation overall was found between RMS
Mean and Average Time (r=.95, p<.001). Opposing audio
features like Warmth and Sharpness showed similar abso-
lute correlation values but opposite directions for Number
of Strokes, Intersections and Acute Angles.



5. DISCUSSION

All participants completed the study successfully, but the
exploratory study design described in Section 2.4 benefited
participants who approached the task intuitively and made
it more difficult for those who aimed to follow a consis-
tent, systematic approach. The card sorting results provide
meaningful high-level categories that should, however, not
be interpreted as mutually exclusive with many sketches
showing elements of more than one category. Overall,
participants predominately chose abstract elements like
shapes and contours over scenes or icons, but this does
not necessarily capture a participant’s intention. For ex-
ample, a sketch showing a single line might visualise the
simplicity of a sound, but could also refer to its amplitude
envelope. Music proficiency and the type of sound had an
influence on the representational approach with depictions
of real-life associations being more prevalent among non-
musicians and for instrumental or environmental sounds
as reported in Section 4.2. Some participants reported hav-
ing experience with digital drawing applications and, while
this was not quantified in the study, it does appear to have
had an effect on their approach. A different interface, like
a graphics tablet, might also have an impact on the results.
The ICC analysis suggests that some level of agreement ex-
ists between participants on how to sketch sounds visually
and that these sketches can be described reliably with the
features introduced in Section 3.3. However, the ICC(2,k)
model used in the analysis considers the averaged measure
of all raters and cannot provide information about the reli-
ability of a single rater. A sketch-based synthesiser needs
to work with the input of individual users one at a time and
therefore rely on measurements with a high single rater re-
liability. In future work, the suitability of the sketch fea-
tures has to be evaluated in that context. A large number of
strong correlations between sketch and audio features was
found that generally align with results from studies where
existing visualisations were matched to sounds [15, 16].
Sharp, rough and hard sounds result in sketches with more
acute angles compared to warm or deep sounds. Contrary
to expectation, curve points did not show any significant
correlations as shown in Figure 4. This could either mean
that warm sounds were represented with lines rather than
curves, which is supported by significant negative correla-
tions between Warmth/Depth and Intersections or indicate
that a shape’s roundness was not represented well by the
curve points. Number of Strokes and Intersections, fea-
tures not commonly discussed in sound-shape research,
produced strong correlations and should be considered in
future work. A qualitative review led to the hypothesis that
Objects/Scenes sketches will not produce the same cor-
relations as abstract sketches because they correspond to
high-level associations rather than specific sound charac-
teristics. However, subsets were too small for conclusive
quantitative evaluation. Generally, a larger dataset would
produce more robust results for all statistical tests.

6. CONCLUSION

In this exploratory study, a variety of possible user re-
sponses were found that could be expected when imple-
menting a sketch-based sound synthesiser that uses a dig-
ital drawing interface. Results indicate that there is a gen-

eral consensus about how to communicate timbre through
visual sketches that can be quantified in a statistically
meaningful way by extracting visual and audio features.
These findings support the assumption that the develop-
ment of a sketch-based synthesiser is feasible. However,
an exploratory study design can only provide general, in-
dicative results. Future work will have to focus on a spe-
cific set of parameters on which a cross-modal mapping
paradigm can be built. Stricter instructions, a larger sam-
ple size, possibly focusing on a specific type of participant,
and a smaller, targeted set of sound stimuli, for example us-
ing only synthesised pads, could be beneficial to produce
more detailed results.
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[29] D. Müllensiefen, B. Gingras, J. Musil, and L. Stewart,
“The musicality of non-musicians: an index for assess-
ing musical sophistication in the general population,”
PloS one, vol. 9, no. 2, p. e89642, 2014.

[30] V. Braun and V. Clarke, “Using Thematic Analysis
in Psychology,” Qualitative Research in Psychology,
vol. 3, no. 2, pp. 77–101, 2006.

[31] P. J. Rousseeuw, “Silhouettes: a graphical aid to the in-
terpretation and validation of cluster analysis,” Journal
of computational and applied mathematics, vol. 20, pp.
53–65, 1987.

[32] A. Wolin, B. Eoff, and T. Hammond, “ShortStraw: A
Simple and Effective Corner Finder for Polylines.” in
SBM, 2008, pp. 33–40.

[33] Y. Xiong and J. J. LaViola Jr, “Revisiting shortstraw:
improving corner finding in sketch-based interfaces,”
in Proceedings of the 6th Eurographics Symposium on
Sketch-Based Interfaces and Modeling, 2009, pp. 101–
108.

[34] J. E. Bresenham, “Algorithm for computer control of a
digital plotter,” IBM Systems journal, vol. 4, no. 1, pp.
25–30, 1965.

[35] G. Peeters, “A large set of audio features for
sound description (similarity and classification) in the
CUIDADO project,” CUIDADO Ist Project Report,
vol. 54, no. 0, pp. 1–25, 2004.

[36] A. Pearce, T. Brookes, and R. Mason, “Modelling Tim-
bral Hardness,” Applied Sciences, vol. 9, no. 3, p. 466,
2019.

[37] T. K. Koo and M. Y. Li, “A guideline of selecting and
reporting intraclass correlation coefficients for reliabil-
ity research,” Journal of chiropractic medicine, vol. 15,
no. 2, pp. 155–163, 2016.


	 1. Introduction
	1.1 Background on Sound-Shape Associations
	1.2 Related Work

	 2. Methods and Material
	2.1 Participants
	2.2 Stimuli
	2.3 Apparatus
	2.4 Procedure

	 3. Analysis
	3.1 Interview Analysis
	3.2 Sketch Categorisation
	3.3 Sketch Feature Extraction
	3.4 Audio Feature Extraction
	3.5 Statistical Analyses

	 4. Results
	4.1 Interview
	4.2 Sketch Categories
	4.3 Inter-rater Reliability
	4.4 Feature Correlations

	 5. Discussion
	 6. Conclusion
	 7. References

