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ABSTRACT

Sound-shape associations, a subset of cross-modal associ-
ations between the auditory and visual domain, have been
studied mainly in the context of matching a set of pur-
posefully crafted shapes to sounds. Recent studies have
explored how humans represent sound through free-form
sketching and how a graphical sketch input could be used
for sound production. In this paper, the potential of com-
municating sound characteristics through these free-form
sketches is investigated in a gamified study that was con-
ducted with eighty-two participants at two online exhibi-
tion events. The results show that participants managed to
recognise sounds at a higher rate than the random baseline
would suggest, however it appeared difficult to visually en-
code nuanced timbral differences.

1. INTRODUCTION

Sample libraries and sound synthesisers are ubiquitous in
modern digital music production. However, with samples
often organised in lists, finding the “right” sound can be
a tedious, frustrating task and, similarly, complex synthe-
siser controls make it difficult to realise sound ideas in a
straightforward way. Tagging of sound material and syn-
thesiser pre-sets improves the search process, but can be
imprecise because of the ambiguity of language used to de-
scribe sound, or more specifically musical timbre [1, 2, 3].
Sound visualisations can be an additional aid for com-
municating a sample’s characteristics to a user as seen
with waveform representations in digital audio worksta-
tions (DAWs) or spectrograms in specialised audio soft-
ware like Izotope’s RX and Iris. Further, cross-modal as-
sociations between the visual and auditory domain, for ex-
ample between colours or shapes and sound, can be har-
nessed for query or perceptually informed visualisations.
This paper presents a study that investigates to what extent
sound characteristics can be communicated through graph-
ical sketches of personal cross-modal associations. Partici-
pants were presented with a gamified survey in which they
had to match sounds with sketches that were created in a
different study by participants who will be referred to as
artists in this paper. The work was conducted in the con-
text of a larger research programme that investigates how
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sketches can be used to drive sound synthesis [4]. This sec-
tion covers relevant research into sound-shape associations
and sound visualisations and briefly introduces gamified
study design principles. The rest of the paper is organised
as follows: Sections 2, 3 and 4 describe the design, analy-
sis and results of the study, a discussion and conclusion are
provided in Sections 5 and 6.

1.1 Background on sound-shape associations and
sound visualisation

Research suggests that most humans associate sound with
elements of the visual domain to some extent [5]. This pa-
per focuses on cross-modal associations between sounds
and shapes that were first researched by Wolfgang Köhler
who found that the made-up words takete and maluma 1

are associated with jagged and round shapes. The effect
was observed across cultures [6, 7, 8], age groups includ-
ing toddlers [9], for musical sounds [10] and in a recent
study where participants were asked to represent musical
sounds through sketching [11]. Sound-shape associations
can inform visualisations that communicate sound charac-
teristics without audio playback for example to improve
the organisation of one’s personal music library [12], sam-
ple selection for live DJ performances [13], exploration of
different natural sounds [14, 15] and retrieval of abstract
sounds [16]. The idea to use sketches as an input for sound
production was first explored with a non-functioning pro-
totype [17]. Further development [18] was made possible
through current advancements in deep learning for sketch
recognition that is informed by the release of the large-
scale sketch dataset Quick, Draw! [19]. 2 This study in-
vestigates to what extent human participants can recognise
sounds from simple sketches to identify perceptually in-
formed features that can help build a deep learning pipeline
for sketch-based sound production tasks.

1.2 Study gamification

This study was designed with gamification principles in
mind. Research suggests that gamification can have a pos-
itive effect on quality and quantity of responses [20] by in-
corporating the motivational elements of games [21]. For
example, participation can be incentivised by a point sys-
tem [22] with the option to compare results with other
“players” 3 or by an interface design that adopts a game-
like aesthetic as it can be seen in The Clapping Game [23]
and Microjam [24]. The effectiveness of the design can

1 Other studies use bouba and kiki.
2 quickdraw.withgoogle.com/data
3 See Harvard’s Musical IQ survey for an example.
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be evaluated through user experience survey questions as
proposed by Morschheuser et al. [25].

2. METHODS AND MATERIAL

This section describes the design of the study. In ten
rounds, one sound and four different sketches were pre-
sented of which only one sketch was created with that
sound in mind. Participants were tasked to find that match.
Each round featured a different sound and sketches from a
different artist. The following hypotheses are investigated:

• On average, participants will find matches at a
higher rate than the random baseline.

• Participants are most likely to select the sketch cor-
responding to the next most similar sound when not
selecting the correct match.

• The type of sound and an artist’s representational
sketch style will have an influence on the match rate.
The match rate is defined as the frequency at which
the correct sound-sketch match is selected.

2.1 Participants

Eighty-two participants took part in the study of which
thirty completed an optional post-study survey. The study
was part of two online exhibitions that were presented at
the Ars Electronica Festival 2020 4 and the Edinburgh Sci-
ence Festival 2021. 5 Sixteen participants completed the
study on a mobile device (9 iPhone, 6 Android, 1 iPad) and
sixty-six used a desktop or laptop computer (32 Mac, 25
Windows, 5 Linux, 4 unknown). Of the participants who
completed the survey 13 were female, 16 male and 1 did
not disclose this information. The mean age was 33.6 years
(σ = 11.3). Fourteen stated to actively engage in musical
activity at least multiple times a month and two reported
a visual impairment (1 short-sighted, 1 near-sighted) and
one an auditory impairment (tinnitus).

2.2 Stimuli

All ten sound stimuli and sketches from eleven different
artists were selected from a previous study [11] where
participants were asked to sketch their personal associa-
tions with the sound stimuli. An artist was selected if
none of their sketches contained any direct reference to
the sound such as depictions of instruments or other recog-
nisable sound sources or symbolic representations like let-
ters or icons. All sketches were created with a MacBook
touchpad on a monochromatic digital sketch interface with
fixed stroke width. Sounds are equally pitched, loudness
normalised and range from musical instruments (Piano,
Strings, Electric Guitar) and environmental sounds (Im-
pact) to synthesised pads (Telephonic, Subbass) and ab-
stract textures (Noise, String Grains, Crackles, Processed
Guitar). 6

4 The Garden of Forking Paths at the Ars Electronica Festival 2020
5 Seeing Music at the Edinburgh Science Festival 2021
6 All sounds can be accessed online together with the sketches drawn

by participants during the experiment https://bit.ly/3ta6crU.

2.3 Apparatus

The study was implemented as a web app in p5.js with
mobile and desktop capability. The interface was designed
with a gamified aesthetic in mind following examples in-
troduced in Section 1.2. The study consisted of ten rounds.
In each round, participants were presented with one sound
and four sketches of which one was created with that sound
in mind and the remaining three in reference to the 3rd, 6th

and 9th most dissimilar sound as described in Section 3.1.
Sketches were re-drawn in real-time during audio playback
following their normalised timestamp data. Participants
were asked to find the correct match and after selection, the
interface revealed whether their choice was correct. The
order of the sounds and artists were randomised on each
run. Cookies were used to track returning participants and
prevent multiple submissions from the same device.

Figure 1. Screenshot of the study interface. The study can be accessed
online at https://phd-studies-eddd5.web.app/.

2.4 Procedure

In order to make the study more accessible, participants
were presented with only one introduction page that in-
cluded a short description and an animated image to ex-
plain how the game works before starting the matching
task. Only after completing all rounds, participants were
asked for consent to save their data. To incentivise submis-
sion, participants could compare their score to other partic-
ipants after their data had been saved using a mechanism
similar to the Musical IQ survey described in Section 1.2.
Additionally, participants were invited to take part in an
optional survey that collected basic personal information
(age, gender, visual or auditory impairment), music profi-
ciency using a subset of the GoldMSI survey framework
[26] and their experience with the study interface. Infor-
mation about the device used to complete the study were
collected automatically.

3. ANALYSIS

This section provides an overview of the quantitative and
qualitative methods used to analyse the study data.
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3.1 Sound stimuli dissimilarity

One hypothesis introduced in Section 2 states that partici-
pants are most likely to select the sketch corresponding to
the next most similar sound when not selecting the correct
match. To investigate this, the four sketches in each round
relate to the played sound and the 3rd, 6th and 9th most simi-
lar sound. To quantify dissimilarity, the euclidean distance
between standardised audio feature vectors was calculated
similar to [16]. Audio features were extracted with the Li-
brosa library and timbre models [27] as described in [11]. 7

Figure 2. Dissimilarity matrix between sound stimuli. A darker shade
indicates a larger euclidean distance between standardised audio features.

3.2 Survey response analysis

In addition to general personal information, the survey
contains questions asking whether participants enjoyed the
study design. Taking an excerpt from Harms et al.’s survey
questions [22], responses were collected using a five point
Likert scale on whether they enjoyed playing the game and
whether they found the task difficult. In addition, partici-
pants were given the opportunity to report any issues that
they might have encountered and add any general com-
ments. Likert scale responses were summarised and free-
form responses were analysed thematically [28].

3.3 Statistical analyses

The first hypothesis introduced in Section 2 states that on
average participants will select correct matches at a higher
rate than the random baseline of 2.5 out of 10. Pearson’s
Chi-squared test was used to test for significant differences
between the collected scores and the random distribution.

Another hypothesis postulates that participants will be
more likely to select the sketch of the next most similar
sound than the one of the most dissimilar. For this, the
match rate for each sound was extracted from the data.
However, since the artist and sound order was randomised
independently of each other, artists are not evenly dis-
tributed among all sounds. Calculating a sound’s match
rate by dividing the total number of matches by the total
number of occurrences might introduce biases because of
an artist’s over-representation. This was mitigated by cal-
culating the match rate for each individual sound-sketch

7 A detailed summary of audio feature extraction can be found at
http://doi.org/10.5281/zenodo.4764351

and ranking them from 10 (highest rate) to 1 (lowest rate)
within each artist to obtain the mean rank for each sound.
The same procedure was used to compare match rates be-
tween artists.

Spearman’s rank correlation was used to investigate
whether the mean ranks for sounds correlate with their
mean dissimilarity quantified by the mean euclidean dis-
tance described in Section 3.1 and whether the mean rank
for artists correlates with their sketching style. The sketch-
ing style of an artist was quantified by counting the fre-
quency of each of the five categories Grains, Lines, Ob-
ject/Scenes, Chaotic/Jagged, Radiating described in [11],
however because of the artist filtering described in Sec-
tion 2.2 the Object/Scenes category was removed almost
entirely from the subset.

4. RESULTS

The outcome of statistical analysis of the matching task
and results of the post-study survey are reported in this sec-
tion.

4.1 Overall match rate

Figure 3 shows that participants mostly found three (22
participants), four (21 participants) or five (13 participants)
correct matches. Chi-square test returned a significant dif-
ference between this distribution and the random base-
line described in Section 3.3 (χ2(1, N = 82) = 99509.11
p < .0001). In total, the correct option was selected most
frequently (307/820 selections), however the second most
frequent selection was the option that refers to the most
dissimilar sound (212/820). These results suggest that par-
ticipants were able to extract information from the sketches
that helped them to find correct matches, however, contrary
to expectation, participants did not predominately choose
the sketch referring to the next most similar sound when
not finding the correct match.

Figure 3. Match rate of all participants. The mean match rate is 3.74 for
all participants, 4.07 for participants who completed the survey and 3.56
for participants who did not complete the survey.

4.2 Match rate by sound

Table 1 shows how often each of the four sketch options
were selected for each sound. Except for Telephonic (18/82
selections) and String Grains (22/82) the correct option
was selected most frequently with Noise (49/82) and Piano
(47/82) showing the highest match rate. Figure 2 shows
that with an average euclidean distance of 2.57 Noise is
the most dissimilar sound to all other sounds except for

http://doi.org/10.5281/zenodo.4764351


Crackles which is the second most dissimilar sound with a
euclidean distance of 1.46. These sounds also show a high
mean match rank 7.45 for Noise (σ = 2.96) and 6.4 for
Crackles (σ = 2.27) compared to sounds that are less dis-
similar like Telephonic with a euclidean distance of 1.06
and a mean rank of 3.23 (σ = 1.95) or Strings with a eu-
clidean distance of 0.96 and a mean rank of 4.27 (σ = 2.89).
Spearman rank correlation suggests a strong positive cor-
relation between the mean dissimilarity of a sound and its
mean score rank (ρ = .7, p < .05) as visualised with a
trend line in Figure 4. However, the figure also shows that
Piano has the second highest mean rank (µ = 7.32, σ =
2.25) despite a mid-range dissimilarity (euclidean distance
of 1.13). These results suggest that some sketches are more
likely to be correctly matched to a sound which is at least
partially influenced by the sound’s mean dissimilarity to
the remaining stimuli.

Figure 4. Correlation between match rate rank by sound and sound dis-
similarity quantised by the mean euclidean distance between audio fea-
tures.

4.3 Match rate by artist

The sketching style of an artist appears to have an effect on
how well their sketches are matched by participants. Us-
ing the sketch categories described in Section 3.3 a signif-
icant correlation could be found between the frequency of
sketches in the Radiating category and the mean rank for
each artist (ρ = -.71, p < .05). This trend can also be ob-
served when comparing categories between the sketches
with the highest and lowest match rate for each sound
seen in Table 2 with Radiating occurring 7/10 times for
the worst performing sketches, but only 3/10 times for the
best performing ones. It has to be noted that from all cat-
egories Radiating is spread the most evenly across sounds
(Cramér’s V: .16).

Figure 5. Correlation between match rate rank by artist and prevalence
of Radiating category in sketches by an artist.

4.4 Study Design Evaluation

Figure 6. Answers to the questions I had fun playing the game. (0-
completely disagree to 4-completely agree) and How difficult was the
game? (0-very difficult to 4-very easy)

.

A secondary question of this study was to investigate
the effectiveness of the gamified study design. Eighty-
two participants were recruited from visitors of the on-
line exhibitions. The age range of participants described in
Section 2.1 indicates that a diverse demographic could be
reached. Figure 6 shows that despite finding the task dif-
ficult most participants enjoyed completing the study. The
responses for having fun align with findings by [22]. The
free-form answers reveal that the score system of the study
design was criticised by some participants finding it “diffi-
cult getting a ’score’ for a subjective agreement on sound”
(Participant X1) or not being “sure how you define the
’correct’ answer” (Participants X1). Another point of crit-
icism was the short introduction section with participants
saying that “the instructions went by too quickly” (Partic-
ipant X3), the “interface was tricky to understand” (Par-
ticipant X4) and one suggested to “have like a test sound
before the game starts” (Participant X5).

5. DISCUSSION

The gamified study design and integration into non-
academic exhibitions proved successful at reaching a large
and varied participant pool without high recruitment ef-
fort. However, spanning over the course of a year, data
collection was slow. According to survey responses anal-
ysed in Section 4.4, participants enjoyed completing the
study even though they perceived the task to be difficult.
The score system of the design appeared to be confusing
to some with survey responses indicating that scores might
not be adequate for this task. Some participants seemed
to struggle with understanding the interface and the task
possibly because the introduction was short and easy to
skip. A tutorial or training run could be included to make
sure that all participants understand the task. While the
integration into an online exhibition might lower initial
resistance to participate, it can make it more difficult to
motivate participants to complete more tedious tasks like
filling in a questionnaire. Figure 3 shows that a majority
of participants did not continue with the post-study sur-
vey after submitting their score. Overall, a gamified de-
sign presented in a non-academic context might be most
suitable for studies that are not time-sensitive and do not
require a tightly controlled study environment. Results
presented in Section 4.1 show that participants found the



Correct Option 2. Option (3rd distance) 3. Option (6th distance) 4. Option (9th distance)
Crackles: 30 Electric Guitar: 10 Telephonic: 24 Subbass: 18
Telephonic: 18 Processed Guitar: 22 Impact: 18 Noise: 24
Strings: 28 Piano: 14 Processed Guitar: 24 Noise: 16
String Grains: 22 Electric Guitar: 13 Piano: 4 Noise: 43
Subbass: 27 Electric Guitar: 15 Impact: 21 Noise: 19
Noise: 49 Impact: 13 Telephonic: 4 Subbass: 16
Piano: 47 Impact: 17 String Grains: 7 Noise: 11
Impact: 32 Electric Guitar: 19 Processed Guitar: 11 Noise: 20
Processed Guitar: 29 Piano: 7 Impact: 24 Noise: 22
Electric Guitar: 25 Impact: 23 Processed Guitar: 11 Noise: 23
Total: 307 Total: 153 Total: 148 Total: 212

Table 1. Match rates for each sound. For most sounds the correct option was selected most of the times. However, some sounds were often mismatched
(e.g. String Grains and Noise).

Sound
Name

Crackles Tele-
phonic

Strings String
Grains

Subbass Noise Piano Impact Proc.
Guitar

Electric
Guitar

Best
6/11 7/12 9/15 4/9 4/9 10/12 8/10 9/12 6/12 4/9

Worst
1/9 1/9 3/10 0/9 0/13 5/9 6/10 2/9 2/10 1/10

Table 2. Sketches with the best and worst match rates. To reduce the risk of skewing the data through small sample sizes, only sketches were considered
that were shown at least 8 times which is the median number of occurrences. Underlined sketches are part of the Radiating category.

correct sound-sketch matches at significantly higher rate
than the random baseline. However, the match rate is no-
tably lower than the results of similar studies that use vi-
sual stimuli that were purposefully crafted by a single artist
[16, 13]. This is not unexpected as the sketches used in
this study were not produced with the goal to maximise
recognition for other people. Instead the results suggest
that even sketches that were produced intuitively in a short
time can communicate information to identify the sound
that they represent. The results further show that match
rates differ among different sounds and artists. Sketches
from sounds that are more dissimilar to the remaining stim-
uli are more frequently matched correctly. This suggests
that sound-sketches can successfully communicate general
sound information but fail to encode more detailed differ-
ences in timbre. Against expectation, participants were
most likely to select the sketch relating to the most dis-
similar sound rather than the next most similar one when
not finding the correct match. This could mean that partic-
ipants adopted a selection process that identifies the “odd
one out” when three of the four sketches looked similar.
Analysis of sketching category frequencies presented in
Section 4.3 indicate that some sketching styles might be
better at conveying information about sound than others,
but as noted this could be caused by a more even distribu-
tion of some styles across sounds which makes them more
likely to be mismatched than a style that is more strongly
associated with a specific sound. In addition, outliers to
these trends exist for sounds and artists potentially because
the quantified measures for sound dissimilarity and sketch-
ing style cannot capture all dimensions of human percep-

tion. Qualitatively reviewing the results suggests that the
perceptual dimension from noisiness/complexity to calm-
ness/simplicity might be encoded especially well in the
sketch representations which would explain the high mean
match rank for Noise and Piano.

6. CONCLUSION

This study shows that graphical sketch representations of
sounds can be recognised successfully by human partici-
pants if their timbres are sufficiently different from each
other, but it appears to be difficult to visually encode tim-
bral differences of similar sounds. In the context of de-
veloping a sketch-based sound synthesiser, a deep learn-
ing mapping model might be limited to predicting gen-
eral sound categories even when trained on a larger sound-
sketch dataset. Similar studies that reported higher match-
ing rates used purposefully crafted visual stimuli suggest-
ing that introducing guidelines on how to represent differ-
ent perceptual dimensions could increase a model’s accu-
racy. A different approach could be found in tuning a base
model according to an individual user’s sketching style.
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