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ABSTRACT

This paper investigates the influence of cross-modal associations on visual represen-
tations of sound. Compared to established methods that ask study participants to
match existing stimuli, this research explores how people represent sound through
free-form graphical sketches when focusing on musical timbre. A total of 2320 sound-
sketches were collected in two studies that included 28 and 88 participants. High-level
sketch categories were established through qualitative analysis of participant inter-
views and a card-sorting exercise. Inter-participant agreement on representations
and correlations between the auditory and visual domains was computed through
statistical analyses of quantitative sound and sketch features. The results show that
while sound-shape associations play a significant role in sketched representations,
humans incorporate other visual aspects like structural complexity or texture or
choose figurative representations of emotions or sound-producing objects. Some level
of agreement on how to represent sounds could be found between participants, which
appears strongest for sounds dominated by a single perceptual attribute. The analy-
sis further suggests that sound-shape associations found in sound-sketches align with
findings from perceptual matching tasks. This research is motivated by designing
novel perceptually-informed mappings for digital music production and the results
presented in this paper lay the groundwork for the development of a sketch-based
sound synthesiser.

KEYWORDS
sound-shape associations, sound sketching, cross-modal mapping, timbre
perception

1. Introduction

Humans make sense of sound in various ways often connecting different sensory do-
mains. Cross-modal associations describe how a stimulus from one modality can induce
a response in another modality. While often reported between sounds and colour,
they can occur across various modalities, for example between colours and odours,
sounds and tastes or sound and shapes (Spencel, 2011)). Cross-modal associations are
sometimes wrongly referred to as synaesthesia. Synaesthesia is a rare condition with
estimates of prevalence in the population ranging from 5% (Cuskley et al., 2019)
to 0.5% Ramachandran and Hubbard (2001) and 0.05% Baron-Cohen et al.| (1996]).

CONTACT Sebastian Lobbers. Email: s.lobbers@qmul.ac.uk
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Synaesthetes experience cross-modal connections involuntarily and consistently: the
same stimulus always induces the same response. Cross-modal associations on the
other hand are experienced in some form by most people, but connections tend to
be far less consistent and might only occur situationally. Despite this difference, in
a study investigating colour-to-sound mappings control participants and synaesthetes
employed the same heuristics for linking auditory and visual domains, such as con-
necting pitch with lightness (Ward et al., 2006). The authors conclude that this type
of synesthesia involves utilising mechanisms similar to those in typical cross-modal

perception.

Fic. 18 FiG. 19

Figure 1.: Visual stimuli used in cross-modality experiments (Kohler, |1929). The left
shape is overwhelmingly associated with the made-up word maluma or boubou and
the right one with takete or kiki.

One of the earliest examples of cross-modal research is provided by Wolfgang
Kohler, a member of the Gestaltpsychology movement in the 1920s, who found
that people associate the made-up words takete or kiki with sharp, jagged shapes
and maluma or boubou with soft, round shapes (Kohler, 1929)). The effect was
confirmed in multiple studies (Ramachandran & Hubbard|, 2001) and generalised to
all phonemes (Nielsen & Rendall, 2013). It was observed across cultures (Davis, 1961}
Taylor & Taylor, |1962; Bremner et al., 2013), age groups including toddlers (Maurer
et al., |2006), to some extent, with the visually impaired (Bottini et al., 2019) and
between movement and phonemes (Shinohara et al., 2016|). Similar associations were
not only found for phonetic sounds but also for musical instruments (Adeli et al.,
2014; Gurman et all 2021)) and abstract sonic textures (Grill & Flexer, |2012). While
these studies explicitly ask participants to match stimuli from different modalities,
a different approach measures how a stimulus in one domain can influence the
perception of another stimulus in a different domain. A famous example is the
McGurk effect (MacDonald & McGurkl [1978)), a multisensory illusion that occurs
when merging video and audio recordings of vocalising different consonants. Other
examples include the impact of a mug’s colour on the taste of coffee (Van Doorn
et al., 2014)) and the effect of piano music on sexual attractiveness (Marin et al., 2017)).

The work presented in this paper focuses on sound-shape associations, a subset
of cross-modality research, that describe how people connect timbre with geometrical
shapes (Sidhu & Pexman, 2018). Cross-modal associations are typically investigated
by asking participants to match visual and sound stimuli. However as pointed out
by |Soraghan et al| (2018), this approach can show which of the presented stimuli
participants are most likely to match and does not account for whether a participant
might favour a different representation altogether. This research asked participants in
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two studies to create monochromatic sketch representations of their associations with
sound. The first study uses an exploratory design that imposes minimal restrictions
to gain an understanding of the variety in which participants will represent different
types of sound graphically. The second study uses a more controlled design that
focuses on simple representations of sound produced by a frequency modulation
(FM) synthesiser. Alongside sound-sketches, qualitative feedback was collected
from participants through interviews and surveys to find out how the tasks were
approached. The analysis categorises the various representational approaches and
tests for correlations between sounds and shapes through statistical analyses of
quantitative audio and visual features. The results lay the groundwork for the broader
context of this research that aims to determine if a graphical sketch input can be
used to help improve interaction with digital music production software, specifically
for controlling digital synthesisers. The design process of the second study included
the development of the digital sketching interface from a simple, generic sketchpad
to a specialised sketching interface that could be used for controlling a sketch-based
synthesiser.

This paper first introduces relevant research into visual representation of sound
with a focus on sound-shape associations, musical timbre and sketch recognition
in Section Pl Methods and material for both studies are described in Section [Bl
The results for both studies are presented in parallel in multiple sections: analysis
of participant feedback in Section [4] sound-sketch categorisation in Section [5| and
statistical feature analysis in Section [6] Discussion and conclusion can be found in
Sections [7] and [8] Acknowledgement of the research funding body and a disclosure
statement including reference to ethical approval for all studies are found in Sections [9]
and A detailed presentation of extracted audio and visual features is provided in

Appendix [A]

2. Background

This section first gives an overview of cross-modal representations of sound with a focus
on sound-shape associations that build the basis for this research. It then continues to
introduce research into timbre and sketch recognition that is relevant for the analysis
of the user studies.

2.1. Cross-modality in visual representations of sound

Cross-modality does not only play a role in human perception of the world but also
in executing certain actions. Thoret et al.| (2016|) found that participants drew circles
with a more elliptical skew when listening to sounds that evoked elliptical kinematics.
Salgado-Montejo et al.| (2016) showed the influence of pitch on the location of free
hand movement. They also found movement to be more jagged for higher pitches and
rounder for lower pitches. Both examples show that consistencies can be found be-
tween people not just in matching or rating tasks but also when given free agency over
their response. However, participants’ actions were not visualised posing the question
of the influence of an action’s graphical representation on the cross-modal response.
In visual art, connections between the auditory and visual domains are a recurring
theme. Notably, Russian artist Wassily Kandinsky developed multiple hypotheses on
associations between shapes, colours and music leading to a number of cross-modal
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artworks inspired by pieces of composer Arnold Schonberg (Rucsanda et al. 2019).
Consistent associations were found between complex stimuli of visual artworks and
musical compositions (Albertazzi et al. |2015) and piano music excerpts and simple
visual structures (Clemente et al., [2020). M. Kiissner| (2014)) investigated how par-
ticipants represent pure tones varied in pitch, loudness and tempo through drawing
and produced similar findings about the connection of space and pitch as [Salgado-
Montejo et al.| (2016]). While timbre is acknowledged to play a role in cross-modal
associations, the aforementioned research focuses on the musical context of the sound
stimuli. Focusing on music timbre and visual texture, (Giannakis and Smith/ (2000])
and |Giannakis| (2006 provide an overview of audio-visual mappings for computer ap-
plications. They critically point out the difference between physical and perceptual
representations of sound and arbitrary and sensory mappings. (Grill and Flexer| (2012)
showed how sensory mappings, which are based on cross-modal associations, can help
participants retrieve sound samples outside of a specific musical context. [Knees and
Andersen (2016) further developed this idea by proposing sound retrieval from a graph-
ical sketch input and built a non-functioning prototype of such a system. Compared to
Kiissner’s research, timbre plays a more dominant role here which participants tend to
visualise through shapes, contours or textures - described by the researchers as sym-
bolic representations. Recent research further investigated how participants represent
different timbres in a more controlled way and showed how a functioning sketch-based
sound retrieval pipeline could be implemented with the help of deep learning (Engeln
& Grohl [2020; Engeln et al., [2021). The results showed that participants chose ab-
stract, geometrical shapes as well as more complex images to represent sound. Work
by the authors produced similar results (Lobbers et al., [2021) and further suggests
that, to some level, free-form sketches consist of universally recognised patterns that
allow participants to extract information about a sound’s characteristic (Lobbers &
Fazekas, 2022)). The research presented in this paper takes a closer look at how to clas-
sify different representational approaches and collects a comprehensive sound-sketch
dataset.

2.2. Description of musical timbre

Musical timbre is generally described as the qualitative aspects of sound that cannot
easily be quantified like loudness or pitch; however, it remains a concept that lacks
a unified definition. An often-cited definition from the American National Standards
Institute (ANSI) states that timbre is the auditory attribute that enables listeners to
distinguish two sounds with the same loudness and pitch (ANSI, |1994)). This is often
criticised for only describing what timbre is not, but not defining what it actually
is (Siedenburg & McAdams, 2017)). While humans typically have an intuitive under-
standing of what constitutes timbre, the language they use to describe it varies indi-
vidually (Saitis et al., 2020)) often borrowing concepts of other sensory domains (Saitis
& Weinzierl, 2019)). Despite this lack of a common vocabulary, Wallmark and Kendall
(2021)) argue that some concepts like luminance (bright), texture (rough), and mass
(heavy) widely appear across language groups. In the realm of contemporary music
production, where digital technologies play a pivotal role, musical timbre occupies
a prominent role for many modern music styles that distinguish themselves through
their ‘specific’ sound rather than harmony, melody or musical structure (Provenzano,
2018; Blake, [2012)). Finding or crafting a desired sound becomes an integral part of
the production process which often involves searching large sample libraries or tweak-
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ing software parameters. These parameters often relate to the underlying digital signal
processing (DSP) rather than perception of sound which can make it difficult to realise
sound ideas or explore sonic spaces in an intuitive way (Seagol 2013). The perceptual
attributes used to process a sound can be influenced by the source itself or individ-
ual factors of the listeners like preference, domain knowledge, cultural upbringing or
listening context. This becomes apparent in the descriptors of sound libraries and syn-
thesiser presets in digital audio production that can range from describing an acoustic
instrument (keys, strings, drums), a compositional function (lead, pad, bass), a play-
ing style (staccato, legato, arpeggio), references to genre (rock, hip-hop), hardware
(808, clavinet), jargon (wobble bass, acid), mood (happy, sad) or describing a sound’s
timbre directly often with the help of cross-modal associations (bright, rough, shrill).
Without tagging guidelines or a unified approach to describing sound, retrieving spe-
cific sounds from sample or preset libraries can be a cumbersome task that impairs
the creative process. An increasingly popular approach for the organisation of these
libraries is to display samples in a 2-dimensional space where similar samples are dis-
played close to each other (Fried et al.,|2014; Bruford et al., 2019} |Garber et al., 2021]).
The groundwork for this approach was laid by (Grey| (1977)) and further popularised by
Iverson and Krumhansl| (1993) and McAdams et al. (1995), who obtained dissimilarity
ratings through participant studies and using multi-dimensional scaling (MDS) to low-
dimensional timbre space. For applications that are designed to work with a user’s own
sample library like the Timbral Exploreﬂ it is not feasible to use samples annotated by
humans. Instead, they use computationally extracted audio features. A popular and
successful feature is the mel-frequency cepstral coefficient (MFCC) that can be used as
input for deep-learning classification of diverse environmental sounds (Cramer et al.,
2019). However, MFCCs are not very good at communicating sound characteristics to
humans or helping explain the perception of sound (Siedenburg et all 2016). Other
popular computational features that, while still based in acoustic feature analysis,
show better alignment with human perception are spectral flatness and zero-crossing
rate that describe a sound’s noisiness, spectral centroid that serves as a measure for
brightness and the root-mean-square (RMS) describing a sound’s loudness (Peeters,
2004; McFee et al., [2015). |Pearce et al.| (2019) aim to bridge the disconnect between
computational features and features relevant to human perception by developing a
model that, through a mixture of human-annotated sound samples and computed fea-
tures, predicts a sound’s hardness, depth, brightness, roughness, warmth, sharpness,
booming and reverberation. Further research explores how, prompted by adjective,
participants synthesise novel timbres through frequency modulation (FM) (Wallmark
et al.l 2019). Similarly, [Hayes et al.| (2022a)) implemented a simple FM synthesiser to
run in a web browser and collected a dataset of annotated synthesiser sounds through
an online participant study. Participants were presented with a prompt to change a
reference sound and then asked to annotate the result. The prompts were presented in
the form make the sound less/more: bright/rough/thick. The attributes were derived
from the luminance-texture-mass (LTM) model (Zacharakis & Pastiadis, 2015} 2016])
that suggests that timbre descriptions can sufficiently be explained by these three
dimensions for sounds with similar amplitude envelopes.

Ihttps://www.audiocommons.org/2019/01/30/timbral-explorer.html
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2.3. Sketch recognition

To statistically evaluate cross-modal associations between sound and shapes both do-
mains have to be described as quantitative features. The extraction of information from
hand-drawn sketches by a computer is called sketch recognition. Typical applications
include recognition of handwriting or image retrieval from a sketch input. Sketches
can be analysed as rasterised images using a computer vision approach. A benchmark
task is the classification of handwritten digits with the MNIST dataset that is typi-
cally achieved through machine learning with convolutional neural networks (CNNs)
producing the best results (LeCunl 1998; Deng, 2012). Representing sketches sequen-
tially either through vectorisation or collecting sketches digitally gives the opportunity
for a wider range of analyses. The most notable example is seminal work by |[Ha and
Eck| (2017)) that introduced the SketchRNN architecture that uses a variational au-
toencoder (VAE) built on recurrent neural networks (RNNs). SketchRNN was trained
on Quick, me.ﬂ a large-scale, open-source dataset with over 50 million sketches di-
vided into categories ranging from simple geometric shapes to complex representations
of animals and objects. Quick, Draw! inspired a large number of projects by enabling
researchers to experiment with pre-train models and (re-)train them for specific tasks.

While SketchRNN produces impressive results for sketch classification and gener-
ation, algorithmic approaches might be more suitable for describing the shape of a
sketch. The ShortStraw algorithm (Wolin et al., 2008) provides a simple, effective
tool to extract corner points. Xiong and LaViola Jr| (2009) extended the algorithm to
also recognise curve points. Sezgin (2001) further show that information can not only
be extracted from a sketch’s shape but also from the sketching speed, for example,
corner points can be estimated from a decrease in speed before each point. In the con-
text of sound-shape associations, sketch or movement responses are often interpreted
qualitatively by humans rather than computationally as it can be seen in the works
by Salgado-Montejo et al. (2016) and Knees and Andersen (2016)) discussed in Sec-
tion M. Kissner| (2014]) proposes a computational approach to extracting features
from sound-sketches that, however, expect a representation inside a grid where the
x-axis represents time. Engeln et al.| (2021) harness advancements in deep learning for
sketch recognition to implement a computational method for free-form sketch-based
sound retrieval. However, an end-to-end retrieval approach might not reveal which
aspects of a sketch are relevant to sound-shape associations.

3. Methods and Material

In order to investigate sound-shape associations in free-form sketch representation,
two studies were conducted resulting in two sound-sketch datasets and correspond-
ing qualitative and quantitative analyses. In both studies, participants were asked to
sketch their associations with sound stimuli using a digital interface. For both stud-
ies, quantitative features were extracted from the sound stimuli and sound-sketches
to investigate sound-shape connections through statistical correlations. Study 1 was
accompanied by qualitative interviews to gain a deeper understanding of how partici-
pants chose their representations. This research further provides high-level categories
for the broad classification of sound-sketches that were achieved through a card-sorting
exercise in Study 1 and an automated, machine-learning approach in Study 2.

%https://quickdraw.withgoogle.com/
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3.1. Design of perceptual studies

As discussed in Section [2.1] relatively little research has been conducted on how hu-
mans represent sounds through graphical sketching. The two studies presented in this
paper collect sound-sketches by combining existing research that asks participants to
match auditory and visual stimuli or undertake specific hand movements while lis-
tening to sound with methods of digital sketch collection introduced in Section
In both studies, participants are presented with a number of different sound stimuli
and are asked to sketch their personal association with them. The first study follows
an exploratory design with minimal instructions for participants and different cate-
gories of sound from abstract synthesiser pads to acoustic instruments to obtain a wide
overview of different representational approaches. Informed by the results of Study 1,
the second study followed a more controlled design with a further developed interface
and a narrower set of synthesised sound stimuli that encouraged simpler, more ab-
stract sketch representations with a stronger link to sound-shape associations. Besides
collecting sound-sketches, it is important for this research to understand the reason-
ing behind different approaches. Qualitative feedback can give a more detailed insight
into the thought processes of a participant and might yield information that cannot
be captured through quantitative data. For Study 1, qualitative data was collected
through behavioural observation and a semi-structured interview that probed partic-
ipants to reflect on their approaches and the interaction with the digital interface.
Study 2 gave the option to provide brief written feedback and asked participants to
answer a modified System Usability Scale (SUS) questionnaire (Lewis, 2018). All ver-
bal feedback was analysed through thematic analysis (Braun & Clarke, 2006; [Stuckey),
2015). General demographic data including age, gender, occupation and country of
origin was collected through survey questions. In addition, the section of the Gold-
smiths Music Sophistication Index (Gold MSI) (Miillensiefen et al., |2014) relating to
musical training and engagement with music was used to categorise participants by
music proficiency.

3.2. Material

Both studies are set entirely in a digital environment and sound stimuli are selected
with regard to timbral differences. Participants for Study 1 completed the study on
the same laptop and, to keep similar conditions, only laptop or desktop devices were
allowed for Study 2.

3.2.1. Study 1

The study was conducted in person using the touchpad on a 15" MacBook Pro and
a pair of Beyerdynamic DT 770 headphones in calm, indoor locations. Ten stimuli
with distinct timbral characteristics were crafted in reference to two cross-modal ex-
periments presented in Section (I} which examine musical sounds (Adeli et al., 2014)
and synthesized sounds and textures (Grill & Flexer, 2012). This approach aims to
broaden the investigation of cross-modal representations beyond more narrowly de-
fined categories to a wider range that could be encountered in a digital music creation
environment. The stimuli can be divided into harmonic sounds that include musical
instruments (Piano, Strings, Electric Guitar) and synthesised pads (Telephonic, Sub-
bass) and inharmonic sounds that include environmental sounds (Impact) and abstract
textures (Noise, String Grains, Crackles, Processed Guitar). Piano and Strings were
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created with virtual instruments in the Kontakt 5 plugin by Native Instruments, Elec-
tric Guitar was recorded with an audio interface via line-in. Impact was taken from the
online audio repository freesound.org and Telephonic, Subbass, Noise, String Grains,
Crackles and Processed Guitar were designed with built-in plugins in the digital audio
workstation Ableton Live 10. Harmonic sounds were pitched to the MIDI note C3
which lies within the frequency range used in the reference experiments. All sound
stimuli are monophonic and normalised for equal loudness. They last eight seconds
with varying amplitude envelopes and include trailing silence to mark a clear endpoint
during looped playback. The perceived base frequency may vary due to prominent har-
monics

3.2.2. Study 2

The study was conducted entirely online. An initial audio check as well as a mid-study
attention test ensured that participants listened to the audio playback either through
headphones or speakers. Twenty different FM synthesiser sounds were selected from
the dataset by Hayes and Saitis| (2020) discussed in Section All sounds have a
short attack and high sustain to ensure that participants focus on timbre rather than
amplitude envelope. The FM synthesiser was implemented with the AudioWorklets
interface of the Web Audio API to synthesise sound directly in the browser rather than
using audio samples which enabled continuous playback of a sound without looping.
All sounds were pitched to the MIDI note A3 and loudness-normalised [

3.3. Interfaces

For both studies, digital sketching interfaces were used that can run in a web browser.
This makes it possible to collect sketches directly as sequential data as presented in
Section [3.7] and collect data online. As this research investigates sound-shape asso-
ciations, the interfaces only allow monochromatic sketches with fixed stroke widths.
Sketch analysis of Study 1, described in the following Sections, suggests that sound-
shape associations more strongly inform simple sketches. To investigate that connec-
tion in greater detail, the interface was developed from a generic to a specialised design
through an iterative design process that sought to encourage simple sketches between
participants without majorly impacting their perceived sense of expressiveness and
autonomy.

3.8.1. Study 1

The requirements for this interface, that is illustrated in Figure [2| were that par-
ticipants can only express their ideas through monochromatic strokes, but are not
otherwise limited or supported. The black canvas was chosen to clearly distinguish
the sketching area from the rest of the website. No option to partially or fully erase
a sketch was provided so that participants would not revise their original idea. While
the goal of Study 1 was to gain insights into the different sketched representations of
sound, it also provided feedback on how to develop the interface for sound-sketching
tasks. Feedback evaluation showed that, overall, participants were unsatisfied with the

3All sounds for Study 1 can be accessed online at https://bit.1ly/3ta6crU| together with the sketches pro-
duced by participants.

4All sounds for Study 2 can be accessed online at https://sfrl.github.io/study2_gallery/ together with
the sketches produced by participants.
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Figure 2.: Interface for Study 1: generic design that allows for fixed-width, white strokes
on a black canvas with a fixed size of 750x750 pixels. There are no sketch length limits,
stroke simplification and undo or reset options. Sketch points are connected by straight
lines.

interface, especially in regards to sketching straight lines or smooth transitions. In ad-
dition, the canvas proved to be too small with multiple participants sketching over the
edges. The black background received positive comments, but for some participants, it
seemed to have artistic rather than purely functional meaning. While the design was
successful in forcing participants to stay with their original idea, it did not take into
consideration that participants might want to correct technical mistakes rather than
change their overall approach.

3.8.2. Study 2

The feedback from Study 1 was addressed in the further interface design. Stroke simpli-
fication and spline interpolation were implemented to make it easier to sketch straight
lines and smooth transitions. The canvas automatically stretches to the size of the
browser window to prevent sketches from extending over the edges. A reset button
ensures that participants can start over, but an erase or undo function was withheld
to prevent participants from focusing on retouching their representations. These de-
sign choices are similar to the Quick, Draw! interface introduced in Section which
makes collected sketches compatible with their dataset and deep-learning architecture.
A major difference between the two interfaces is the length limit introduced in Study
2. The goal of this research is to collect sketches that encode sound characteristics
through shape which typically results in simple, abstract representations. However,
the categorisation of Study 1 sketches, as described in detail in Section [5| show a sig-
nificant number of figurative representations like scenes or objects. As these sketches
are on average longer, limiting the length permitted by the interface was expected
to reduce those types of representations. This was tested in three small-scale design
studies with 10-15 participants each. Different designs were evaluated on how well
they guided participants towards simple, abstract representations while maintaining
the feeling that the interface allows them to be expressive. This concluded in the setup
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Figure 3.: Interface for Study 1: Specialised design that allows for fixed-width, black
strokes on a white canvas that scales to a participant’s browser window (a minimal
size of 800x600 pixels was enforced). The sketch length is limited to the range of 30
to 150 points. A sketch can only be submitted if it exceeds the lower length limit. If a
participant continues sketching after reaching the upper limit, sketch points are erased
from the start. A small meter in the top left corner of the canvas indicates the current
stroke length. Participants can reset the canvas to start over. The Ramer-Douglas-
Peucker algorithm (Douglas & Peucker, 1973) was used for stroke simplification and
stroke points were connected with Catmul-Rom splines (Catmull & Rom, (1974).

described in Figure

3.4. Participants

Recruitment was open to all adults over the age of 18. The aim of these studies was
to find out about sound-shape associations by sampling from the general population.
As engagement with music was expected to have an influence on representations, for
Study 1 musicians and non-musicians were recruited in equal parts.

3.4.1. Study 1

Twenty-eight participants were recruited through mailing lists and in person at the
School of Electronic Engineering and Computer Science at Queen Mary University
of London. This group was divided equally by gender (14 female, 14 male), 25 were
adults below the age of 34 (three between 34 and 49), 22 had a Western background
(16 from Europe, 4 from North America, 2 from South America) and 5 an Eastern
background (4 from China, 1 from India) with one participant preferring not to disclose
this information. A participant was defined as a musician if they responded to having
at least one year of formal music education and engaged in musical activity (playing
an instrument, producing or composing music) at least once a month. This resulted
in 14 musicians and 14 non-musicians.

3.4.2. Study 2

Eighty-eight participants were recruited through the online platform ProliﬁcE] The
majority of participants were female (48 female, 38 male, 2 other) and 84 were aged
between 18 and 33 (M = 22.5, SD = 4.6). All participants had a Western background
(56 from North America, 16 from Europe, 13 from South Africa and 3 from South
America) with the majority coming from Mexico (54 participants). Sixty-six were

Shttps://prolific.co/
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students and 28 stated to have had at least one year of formal music education and
actively engage in musical activity at least once a month.

3.5. Procedure

A similar procedure was used for both studies. As Study 2 was conducted online a
more robust digital environment was deployed to ensure that participants completed
the study successfully.

3.5.1. Study 1

CRX PPy Y e

Figure 4.: Participant sketching a sound in Study 1

Participants were first asked to adjust playback audio to a comfortable measure
using white noise as a reference. They then completed a questionnaire collecting de-
mographic data and information about their experience with music. Participants were
then asked to familiarise themselves with the sketching interface without audio before
they were presented with the sound stimuli. The study intended to encourage a spon-
taneous response, therefore no information about the range of sounds was provided
and participants were instructed to sketch what they believed to best represent each
sound stimulus. Looped playback started automatically with the option to pause and
resume. Each sound was played twice in a randomised order resulting in a total of
twenty sketches per participant. After completion, a semi-structured interview was
conducted asking participants how they approached the task and whether they found
it difficult. No time limit was given and the study typically took twenty to thirty
minutes to complete[f]

6The setup for Study 1 can be accessed online at https://bit.1ly/3j3FkV0.
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3.5.2. Study 2

Participants were first presented with a set of information ensuring that they use a
laptop or desktop device and are able to listen to sound either through headphones
or loudspeakers. This was followed by a short introduction of the study that included
guidelines on representing sounds in an abstract rather than figurative way, a short
explanation of the sketching interface, a guide to adjust playback volume to a com-
fortable level and a check that the browser window size was at least 800x600 pixels.
Before starting the main task, participants were given the opportunity to familiarise
themselves with the interface in two test rounds in which they were asked to sketch
their associations with an imagined calm and noisy sound. For the main task, sound
stimuli were played back automatically in a randomised order with the instruction Lis-
ten to the sound and draw your association. An attention test was played back after
completing half of the task asking participants to sketch the number four instead of a
sound. The study concluded with a survey asking participants about their experience
with the study and the interface and collecting demographic data, experience with
music and the hardware they used to complete the studyE]

3.6. Sketch categorisation

The first step of the analysis categorises different representational approaches that
participants deploy and investigates to what extent sound-shape associations inform
them. The sketches produced in Study 1 were categorised in an open card-sorting
study by six participants (4 female, 3 musicians) who did not take part in the main
study. They were asked to sort the collected sketches into three to ten categories
including short written descriptions. The study was completed remotely within three
hours on participants’ devices following detailed instructions that can be accessed
onlineﬁ Following the methodology of Paea and Baird (2018), the results were
encoded and reduced in dimensionality using principal component analysis (PCA).
K-means clustering was used together with the silhouette coefficient (Rousseeuw),
1987)), a measure of cluster goodness, to find the most suitable number of clusters
between three and ten. Clusters were named and described qualitatively based on
keywords that participants used in their category descriptions.

Due to the higher participant number, Study 2 produced a considerably larger
number of sound-sketches and the categorisation process was automated with the
help of machine learning. A variational autoencoder (VAE) using the SketchRNN
architecture was pre-trained on the Quick, Draw! categories Triangle, Square, Circle,
Line, Squiggle and Zigzag before feeding in sound-sketches from Study 2. The
resulting 128-dimensional latent representation of the dataset was reduced with PCA
and the best number of clusters was determined with K-means and the silhouette
coeflicient as described above. Clusters were named following the findings from Study
1.

Pearson’s Chi-squared test was used to test whether sounds are represented
equally across sketch categories or if certain types of sound can be connected to a spe-
cific category. Similarly, Cochran’s Q test was used to assess whether a participant’s
musical proficiency has an influence on how their sketches are categorised.

"The setup for Study 2 can be accessed online at https://sketching-sounds.web.app/.
Shttps://youtu.be/LXTlnaAciliv
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3.7. Quantitative analysis of sketch and sound features

All sketches are saved digitally as sequential data in nested arrays. Each stroke is
described in a separate array that consists of sketch points described by their x and y
positions and timestamps. A sketch is rendered into an image by connecting all points
within each stroke array. To describe sketches quantitatively, a number of features
can be calculated directly from the data structure and through simple arithmetic
operations as demonstrated in Equations 1, 2 and 3, where NN is the number of strokes
in a sketch and L, T and S are their average length, completion time and sketching
speed. The number of points in the k* stroke is described by ny. Each point has a
position xj, and timestamp ¢;,. The Euclidean distance between two points is described

by d(p, q).

o
I = N Z d (:L'ki7xki—1) (1)
k=1 i=2
_ 1
T=< ;tk — ty, (2)
B 1 N ny 1
k=1 i=2 o 1

Sound-shape associations are usually reported with respect to a shape’s contour
focusing on their ‘jaggedness’ or ‘roundness’ (Adeli et al., 2014; Grill & Flexer, 2012]).
As illustrated in Figure [5] these attributes were quantified by extracting corner points
divided into obtuse, right and acute angles and curve points divided into wide and
narrow shape algorithm (Wolin et al., 2008} Xiong & LaViola Jr, 2009). A qualitative
review suggested that sketches differ by the number of stroke intersections that can be
interpreted as the ‘noisiness’ of a sketch. The number of intersections was determined
using an adaptation of Bresenham’s rasterisation algorithm (Bresenham) |1965). Prior
to extracting features, the sketch data was cleaned by removing consecutive points
with the same position and merging two strokes if a starting point was within a five-
pixel distance to an endpoint. The number of intersections, corner and curve points is
reported relative to the total stroke length of a sketch.

In order to investigate sound-shape associations through statistical analysis, the
sound stimuli also have to be described using quantitative features. This was ac-
complished by computing the mean values of Centroid Frequency, Spectral Flatness,
Zero Crossing and Root Mean Square Power (RMS) for each sound using the Librosa
Python library (McFee et al.} |2022) with an FFT window size of 2048 and hop length
of 512. In addition, the timbral models by Pearce et al. (2019) provided quantified
measures of Hardness, Depth, Brightness, Roughness, Warmth, Sharpness and Boomi-
ness which can more easily be related to human perception of sound. The additional
feature RMS Slope, describing how continuous or intersected a sound is, was quantified
by the slope between prominent extrema in the RMS envelope.

The sketch categories described in Section [5| provide a qualitative description of rep-
resentational approaches. The quantitative set of features described in this section is
used to investigate sound-shape associations statistically. Spearman’s rank correlation
coefficient is used to find out which, if any, visual features correlate with which audio
features. As a linear perceptual relationship between features cannot be assumed and
the underlying distribution is unknown, the non-parametric Spearman test was chosen
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Figure 5.: Sketch feature extraction

as it can find not only linear but monotonic relationships in general. The correlation
analysis uses mean values of visual features for each sound. To ensure that averaged fea-
tures still pose meaningful sketch descriptions the inter-rater reliability was determined
using the ICC(2,k) model intraclass correlation coefficient (ICC) (Koo & Li, 2016)).
The ICC(2,k) measures absolute agreement of average raters by averaging responses
of k raters for each subject. In this context, sound stimuli were defined as subjects and
sketch features as measurements. Sketch features were first log-transformed to meet
the normal distribution assumption of the ICC. This approach was chosen because
perceptual data typically includes large variance and patterns emerge more clearly
when observing averages. This means that results will provide information about the
average sound-sketch representation derived from multiple participants, but might not
be applicable for predicting or describing sketches of an individual.

4. Qualitative feedback analysis

Qualitative feedback was given in a semi-structured interview in Study 1 which pro-
vided a broad picture of participants’ approaches and laid the groundwork for the
development of Study 2. A part of these results is illustrated in Figure [6] In Study
2, brief qualitative feedback was given in written form and supported by quantitative
survey responses. This section first focuses on feedback about the task itself and then
summarises feedback about the interaction with the interface.

4.1. Sketching task

Task difficulty was reported as easy by 50%, neutral by 21% and hard by 29% of
participants in Study 1 which changed to 84%, 9% and 7% in Study 2. Despite the
positive skew in Study 2, mixed responses were recorded to the question of whether
it was easy to think about sound in a visual way with 50% agreeing, 27% disagree-
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Figure 6.: Reoccurring concepts when describing the sounds in Study 1 extracted from
participant interviews.

ing and 23% giving a neutral response. This is well captured in the response ‘I have
never had to interpret sounds visually, therefore I found it to be kind of a difficult
but interesting task.” (P2.70). This was echoed in interviews from Study 1 where some
participants found it difficult to ‘think of sound in a very visual way’ (P1.8) (P1.16).
However, for some, it became easier to visualise a sound once the task started, as
one participant stated ‘I wasn’t really expecting to be able to visualize sound, but
some of those frequencies were extremely clear to me, as far as how they looked in my
brain.” (P2.53). Participants who felt that the task was easy thought that ‘there was
no right or wrong’ (P1.4), ‘it was just about being creative’ (P1.15), they did not have
to ‘achieve something’ (P1.10), the setup ‘allowed the listener space to interpret all
sorts of sound visually’ (P2.91) or simply found the task ‘interesting’ (P2.39, P2.41,
P2.70, P2.83, P2.91) and ‘fun’ (P2.20, P2.33, P2.45). For Study 2, some criticized
that the ‘sounds were very alike’ P(2.13) which made it ‘[...] hard to find an specifi-
cally draw[ing] to each sound’ P(2.34). On the contrary, in Study 1 some participants
struggled with the ‘great variety in the sounds’ (P1.2) which made it difficult to find
a consistent approach. While some participants approached the task as an intuitive,
creative activity, others were concerned with establishing a consistent visual language,
difficulties arose while deciding which sound characteristics to follow because ‘there
are too many things to consider’ like ‘brightness or aggressiveness or how it [timbre]
develops over time’ (P1.6). Deploying a more systematic rather than intuitive ap-
proach appeared more difficult with one participant who did not deviate from their
initial concept finding themselves ‘going round in circles, and question how valid the
whole approach is’ (P1.9). Some participants reported that ‘complicated ones [sounds]
sounded like pictures, and then the simple ones [...] like piano notes were a lot harder
to draw’ (P1.8) possibly because they ‘hear [them] all the time’ (P1.1), while other
participants thought that ‘it’s pretty straightforward because I know a piano note more
than others’ (P1.5). Most participants approached the task by listening to ‘the actual
sonic qualities of them [the sounds]” (P1.1) and representing them with ‘[...]abstract
patterns, along with patterns that would come from what I thought the instruments
were, and it was kind of a mixture of going back and forth between the two.” P(1.5).
Familiar sounds like the piano can influence participants to choose figurative represen-
tations that include the sound-producing source. However, some participants adopted
a figurative approach that does not pay attention to specific sound characteristics but
rather extracts general information like an emotion from a sound and then depicts a
scene or an object that fits this information. One participant explained their sketch
which is shown in Figure [7] as follows: ‘I wanted to show the emotion in the sound like
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the sound was scary so I drew the forest with only one person inside it. If I think the
sound is peaceful, I will draw the sea and the sun and the water.” (P1.21). These two
different approaches suggest that abstract representations are more strongly informed
by sound-shape associations and figurative representations draw more strongly from
an emotional response or personal memory.

e
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Crackles (P21)

Figure 7.: A participant in Study 1 represented a sound that they perceived as ‘scary’
with a scene that represented that emotion.

4.2. Sketching interface

Analysing responses for feedback about the interface interaction showed that for Study
1, overall, participants were unsatisfied with the interface with twelve mentioning
that they would prefer a pen (either digital or analogue) to be able to sketch more
accurately. Six stated that they would have liked to utilise additional visual tools
like colour, different strokes and textures. However, responses suggested that while
the interface ‘could be more expressive [...] for the purpose it was expressive enough’
(P1.5). The feedback led to the overhaul of the interface design for Study 2 described in
Section For Study 2, 70 and 75 participants responded with agree or completely
agree to the questions I thought the drawing interface allowed me to be expressive and
I thought the drawing interface was easy to use. Three participants still mentioned
that they would like to add colours to the interface and one mentioned that the task
‘would be easier to do on my phone’ (P2.85). A further three participants mentioned
that they would like to increase or discard the stroke length limit.

5. Sketch Categorisation

From the interview analysis of Study 1 two broad representational approaches can be
defined: an abstract approach that is guided at least in part by sound-shape associa-
tions and a figurative approach that is strongly influenced by imagery. Sketch categori-
sation for Study 1 focuses on further formalising these findings and investigating how
participants could be guided towards abstract representations. Study 2 focuses on the
influence of prominent sound characteristics on abstract representational categories.
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5.1. Study 1: manual categorisation through card sorting

As described in Section sketches were categorised in an open card sorting study.
Analysis of the responses returned an optimal number of five categories that were
named: Chaotic/Jagged (172 sketches), Radiating/Round (126), Lines (120), Object-
s/Scenes (86) and Grains (56). The results are visualised in Figure [8| Descriptive
keywords and sketch examples for each category can be found in Table [ A maxi-
mal silhouette coefficient of 0.49 suggests that categories are distinguishable, but not
clearly separated which is also reflected by occasionally overlapping keywords. The Ob-
ject/Scenes category consists mainly of figurative representations while the remaining
categories include mainly abstract representations. Chi-squared test suggests that non-
musicians produce Objects/Scenes sketches more often (x2(1,N=28)=22.51 p<.0001)
while musicians produce Lines sketches at a higher rate (x?(1,N=28)=7.5 p<.01)
possibly because this category contains sketches that appear to reference audio visu-
alisations like envelopes or waveforms. Category counts for Objects/Scenes sketches
significantly differ between sounds (x?(9)=67.07 p<.0001) with post-hoc analysis re-
vealing that Piano and Impact show significantly higher counts than Noise, String
Grains and Processed Guitar (p<.01 for each pair). A possible explanation is that
Piano and Impact have an easily identifiable source that participants attempted to
sketch rather than capturing sound characteristics directly. Noise and String Grains
that show high values for the roughness audio feature (81 and 56) as displayed in Ta-
ble also have the largest share of sketches in the Chaotic/Jagged category. On the
other hand, Subbass, Telephonic and Impact with high values for the warmth audio
feature (65, 54 and 51) have the highest share of the Radiating/Round category. Inter-
estingly, despite high values for warmth (54), Piano and Strings are more frequently
represented with Lines sketches, possibly because they are comparably spectrally sim-
ple sounds which is reflected by the low values for spectral flatness. However, it could
also relate to auditory aspects such as pitch and loudness, as it is not feasible to eval-
uate timbre independently from these attributes. Table [2| shows that Object/Scenes
has the highest average number of sketch points and the second highest average num-
ber of strokes. The highest number of strokes can be found in the Grains category
which is most prevalent in the sounds Crackles and String Grains. However, with
a low average number of points, this category appears to represent the intersecte-
ness of sound quantified by the audio feature RMS slope with multiple short, simple
structures. Chaotic/Jagged and Radiating have a similar average number of points
as Object/Scenes, but a significantly lower number of average strokes. This analysis
indicates that Object/Scenes sketches are more likely to be long and complex with
multiple components which informed the interface development for Study 2 described
in Section

5.2. Study 2: automated categorisation using machine learning

As described in Section the SketchRNN deep learning architecture was used to
create a latent representation of the collected sound-sketches. Figure [10| shows a visu-
alisation of the latent space and categorisation through cluster analysis. In contrast to
Study 1, three clusters were determined to separate the data best, however, a silhouette
score of 0.36 shows that large overlaps exist between them. Three major categories
informed by the card sorting annotations from Study 1 were defined: Lines (610),
Chaotic/Jagged (455 sketches), and Radiating/Round (694). The categories Objec-
t/Scenes and Grains were no longer present in the dataset. This was expected as the
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Figure 9.: Categories by sound stimulus in Study 1.

interface design discouraged Objects/Scenes sketches and Grains sketches were largely
found in intersected sounds that were not included in the audio stimuli for Study 2.
To compare differences in category distribution, six sound groups were created from
sounds from the annotated attributes bright, rough and thick derived from the FM syn-
thesiser sound dataset by [Hayes and Saitis| (2020) discussed in Section[2.2] Each group
contains three sounds with either the highest or lowest value for an attribute. Further
analysis showed that category counts for Chaotic/Jagged and Lines differ significantly
between sound groups (x?(5)=20.38 p<.01 and x?(5)=34.29 p<.00001), but no signif-
icant differences could be found for Radiating/Round (x*(5)=9.59 p>.05). Post-hoc
analysis showed prominent differences in category distribution between the most and
least rough sounds as illustrated in Figure [L1] supporting findings from Study 1 which
showed that rough sounds were more frequently represented with chaotic, complex
sketches and calmer, less rough sounds with simpler lines. Measurements for rough-
ness which were extracted automatically with timbral model by [Pearce et al.| (2019))
and presented in Table were high for the rough sound group (70, 63 and 59 for
Synth 9,13,19) and low for the not rough sound group (29,0,45 for Synth 1,11,14).
This further supports the validity of these features as measurements relevant to hu-
man perception.
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Table 1.: Sketch categories with examples. Category names and keywords were ob-
tained through thematic analysis as described in Section Objects/Scenes mainly
refers to real-world associations while other categories highlight different abstract ap-
proaches, but category clusters might overlap with a number of sketches showing
characteristics of more than one category. Colours were inverted for better visibility.

G e QU oty Rty
Mean Std Mean Std Mean Std Mean Std Mean Std
Points | D60 | 532 534 | 338 1068 | 557 1060 | 696 914 | 722
Strokes | 14 12 2 2 13 9 7 10 4 4

Table 2.: Average number of points and strokes for each sketch category rounded to the
closest integer. Object/Scenes shows the highest number of points and second highest
number of strokes which implies that this category could be reduced when limiting
the size of a sketch.

6. Quantitative feature analysis

This analysis was conducted with the aim of statistically investigating to what extent
sound-shape associations emerge from sound-sketches. First, inter-rater reliability was
determined to confirm sketch features used in this research can measure agreement
between participants. This was followed by calculating correlations between individual
audio and visual features. As discussed in Section the interpretation of the results
needs to consider that this analysis uses averaged values

6.1. Inter-rater reliability

The results of the ICC(2,k) inter-rater reliability measures are illustrated in Figure
For Study 1, reliability measures were good to excellent for Intersections and Acute
Angles, poor to good for Average Speed and moderate to good for all remaining features
within the 95% confidence interval (CI). For Study 2, measures were excellent for
Acute Angles and good to excellent for Intersections, Wide Curves and Right Angles
solidifying findings from Study 1 with higher reliability scores and narrower confidence
intervals. In contrast to Study 1, Number of Strokes and Average Time only returned
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Figure 11.: Categories by sounds grouped by attributes in Study 2.

poor to moderate reliability which can be accredited to the sketch length limit of the
interface. Average Speed however showed good to excellent reliability compared to poor
to good in Study 1 implying that participants might have expressed characteristics
through their sketching speed that would have been expressed through longer, more
complex sketches with an unrestricted interface. This is supported by a larger variance
in average sketching speed compared to Study 1 (SD = 0.23 compared to SD = 0.12).
These results suggest that some level of agreement exists between averaged participants
on how to represent sounds visually and that it can be measured with the extracted
sketch features.

6.2. Feature correlation

Several significant correlations were found between sketch and audio features in both
studies illustrated in Figure [13] For Study 1, Acute Angles (11), Intersections (9) and
Numpber of Strokes (8) show the highest statistically significant (p<.05) number of
strong (r>.6) and very strong (r>.8) correlations with audio features. The strongest
correlation overall was found between RMS Mean and Average Time (r=.95, p<.001).
Opposing audio features like Warmth and Sharpness showed similar absolute corre-
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Figure 12.: Mean values and 95% CI of ICC(2,k) inter-rater reliabilities for each sketch
feature with evaluation guidelines proposed by Koo and Li (2016) (df1=19, df2=513,
p<.01 for all features).

lation values but opposite directions for Number of Strokes, Intersections and Acute
Angles. For Study 2, Wide Curves (9), Intersections (7) and Acute Angles (3) show the
highest statistically significant (p<.05) number of strong (r>.6) and very strong (r>.8)
correlations with audio features. The strongest correlation overall was found between
Intersections and Hardness (r=.81, p<.001). While only 12 strong and very strong
correlations were found compared to 19 in Study 1, more results were significant at
p<.05 level (49 compared to 37). Similar trends can be observed between both studies
with Acute Angles and Intersections showing negative correlations with audio features
Boominess, Warmth and Depth and positive correlations with Roughness, Brightness
and Hardness. Average Speed shows similar correlations to Number of Strokes in Study
1 for example with Hardness and Boominess further supporting the hypothesis that
sketching speed compensated for the sketch length restrictions. In contrast to Study 1,
Wide Curves shows a large number of significant correlations with audio features that
are mirroring Acute Angles correlations as expected from known sound-shape associ-
ations. As all sound stimuli were created with the same amplitude envelope in Study
2 the features RMS Slope and RMS Mean did not provide distinguishing descriptions
and consequently did not show any significant correlations with sketch features.

7. Discussion

7.1. Abstract and figurative representations of sound stimuli

The sound-sketches collected in this research were categorised through a rigorous,
human-centred process consisting of participant interviews and a card-sorting study.
On the highest level, sound-sketches were divided into two groups: abstract and
figurative. Abstract representations appear to be strongly informed by cross-modal
associations and show many similarities to visual stimuli used in matching tasks.
Figurative representations, on the other hand, depict objects or scenes associated with
a sound that may depict the sound source directly, for example in form of a musical
instrument, or may be informed by an emotional response or memory, for example, a
sound perceived as scary might be represented with a scene similar to the sketch in
Figure [7] that is informed by the memory of a movie scene that corresponds to that
emotion. Which representational approach a participant took was influenced by the
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Figure 13.: Spearman’s rank correlation coefficients between sketch and audio features
with annotated p-values: p<.05 (*), .01 (**), .001 (***)

sound type or a participant’s experience. Figurative representations were found to be
more prevalent among non-musicians and for sounds with an easily identifiable sound
source like a musical instrument. This could be interpreted as a difference in listening
modes: coined by [Schaeffer| (2017) and further explored by (2019), the reduced
listening mode describes a focus on the sound itself as opposed to semantic listening
which focuses on the source or meaning of a sound. Described as hardly natural
by , reduced listening can be more demanding for the untrained ear,
especially for sounds from a familiar source. This analysis suggests that two different
approaches would be needed when computationally mapping sketches to sound. For
abstract sketches that encode information about sound characteristics directly in their
form, extracting quantitative sketch features like the ones described in Section
appears to be a viable approach. For figurative sketches, a more suitable approach
might have to include object recognition for sketches of musical instruments and
other sound-producing objects or sentiment analysis for emotionally informed scenes.

Section [6] shows that for Study 1 multiple significant correlations were found
between audio and sketch features despite including abstract and figurative sketches.
With 84% of sketches classified as abstract, figurative sketches did not appear to
impact these correlations. Because of the small sample size, differences in correlations
between abstract and figurative sketches could not be investigated in a meaningful
way. Figurative representations might still be indirectly influenced by cross-modal
associations, for example, an uncomfortable noisy and dissonant sound might be
represented with a scene similar to the design Landscape of Thorns by
that aims to communicate discomfort and danger through sharp and jagged
structures. On the other hand, abstract representations might include references to
symbolic representations of sound that are not based on cross-modal associations.
The feedback analysis in Section [ reveals that some sketches, in particular in the
Lines category, are informed by audio representations like waveforms, spectrograms
or amplitude envelopes.

As described in Section [2.1] cross-modal associations are not fixed; they emerge in
different forms depending on the stimulus and situation and sketch representations
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might incorporate multiple associations or references to objects, scenes or symbols.
Without explicitly asking a participant what they had in mind, it may not be
possible to exactly determine their underlying motivation. Generally, only a few
participants strictly adhered to one representational approach. While dominated by
a primary approach, most participants switched between or mixed representational
styles throughout the sketching task.

7.2. Cross-modal associations in free-form sketches

Compared to the figurative category Object/Scenes the abstract categories Chaotic/-
Jagged, Grains,Lines and Radiating/Rounds appear to be primarily influenced by cross-
modal associations. This research aimed to investigate sound-shape associations specif-
ically, but it might be useful to define the terminology to better interpret the results.
The visual stimuli used in sound-shape matching tasks like |Adeli et al. (2014)) focus
very strictly on shape meaning that stimuli only show the outlining form through a
non-intersecting connected series of lines. Looking at Figures |8 and it is obvious
that participants did not only use form in their abstract sketches. [Knees and Ander-
sen| (2016|) made similar findings and, in their sound-sketch prototype, included tools
to create outlines of simple forms like circles and triangles that can be given more
complexity through free-form lines and filled with textures.
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(a) Synth 11 (b) Synth 13

Figure 14.: Sound-sketches taken from Study 2 for the stimuli Synth 11, characterized
by high values for Warmth and low values for Roughness and Spectral Flatness, and
Synth 13, which exhibits contrasting values for these attributes. There is a difference
in form, with Synth 11 more frequently depicted as Radiating/Round and Synth 13
as Chaotic/Jagged in sketches. In addition, Synth 11 tends to be represented by less
complex sketches that fall into the Lines category.

In this research, the abstract categories Chaotic/Jagged and Radiating/Round
appear to encode sound characteristics through their form with the latter found
more frequently for warm sounds in Study 1 and the former for rough sounds in
both studies which aligns with existing sound-shape research (Kohler, |1929; Adeli et
al., [2014). However, Chaotic/Jagged appears to be also contrasted by Lines which
is more frequently found in the least rough sounds. Sketches in the Lines category
have considerably fewer sharp angles than sketches in Chaotic/Jagged which could
be interpreted as a difference in form, but Lines also exhibits considerably fewer
stroke intersections than Chaotic/Jagged which can be interpreted as a difference in
complezity. The remaining abstract category Grains was particularly prevalent for the
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intersected sounds Crackles and String Grains in Study 1 and is described to consist
of small, repetitive components which can be interpreted as texture and was quantified
by the average number of strokes and the average stroke length. Strictly speaking,
sound-shape associations are not the only cross-modal associations that influence
abstract representations, however, in this context, the definition of shape could be
extended to describe any 2-dimensional structure composed of straight or curved
lines. For quantitative analysis, this broader definition of shape might be sufficient as
the sketch features described in Section|3.7|capture more than just the form of a sketch.

The results of the feature correlation analysis in Section support that typi-
cal sound-shape associations influenced sketch representations with acute angles
positively correlating with attributes like Sharpness, Roughness and Brightness and
negatively with Warmth and Boominess. The sketch feature Wide Curves which was
expected to quantify roundness did not show any significant correlations in Study 1,
but multiple significant correlations for Study 2 that point in the opposite direction
of acute angles. This might be due to noise introduced by higher variance in sketch
approaches in Study 1 but could suggest that the extracted features are not a good
measure for the overall roundness of a sketch. Intersections proved to be meaningful
in describing cross-modal associations showing multiple significant correlations with
audio features across both studies. The direction of these correlations is the same
for acute angles, leading to the belief that the opposing pairs rough and soft for
sound might not only be visualised through jaggedness or roundness but also through
complexity and simplicity. Overall, the roughness of a sound appears to have a strong
influence on how sketches are represented which is clearly visualised in Figure [11]
The figure also suggests that the Lines category is more prevalent for thin sounds,
but the differences found in this study did not prove to be significant. As the sketch
and audio features do not directly quantify thinness, feature correlation could not
provide any additional information. Further work could focus on this attribute of
sound which would provide an additional timbral dimension encoded in sound-sketch
representations.

A general problem that emerged in both studies is that it cannot be clearly
determined which sound characteristic participants focused on. As a participant
in Study 1 stated, there are a lot of different aspects of sound and it is difficult
to represent them all in a simple sketch. This might be made even more difficult
with the sketch length limit that was introduced in Study 2. While it succeeded
in guiding participants to represent sounds in more abstract ways, it does prevent
them from elaborating or overlaying multiple approaches that might capture more
aspects of a sound. It might be possible that thinness or thickness can be encoded
through sketching, but participants mainly focused on roughness when representing
sound. For future research, it could be considered to also ask participants to rate
which attributes of the sound they focused on with a design similar to Hayes et
al. (2021)). An alternative method might involve prompting participants to envision
a sound possessing specific attributes instead of exposing them to an actual au-
ditory stimulus. This approach was employed during the test session in Study 2,
where participants were tasked with sketching a noisy and calm sound. However,
understanding how participants mentally conceptualize a sound remains somewhat
ambiguous, particularly considering that certain common auditory descriptors, such
as "sharpness* or "roundness“ may inherently include visual elements. In addition to
verbal feedback, allowing participants to select a sound that most accurately captures
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their mental representation of a descriptor could offer valuable insights into their
attribute assignments.

7.3. Implications for development of a sketch-based sound synthesiser

Study 2 was designed with a future implementation of a sketch-based sound synthesiser
in mind. The results can shed light on which mapping architecture is more appropriate
for such a system:

e a regression approach where a change in timbre is induced by an incremental
change in the corresponding sketch feature. For example, a sound would become
noisier with an increase in sharp angles.

e a classification approach where the overall timbre category is determined. In this
scenario, a sketch could represent multiple categories for example either rough
or soft in combination with either thick or thin.

The feature correlations in Section describe a monotonic relationship between
audio and sketch features which can lead to the conclusion that a gradual increase in
an audio feature like roughness coincides with a gradual increase in a sketch feature
like acute angles. However, it has to be remembered that these sketch features rep-
resent the average sketch of the participants meaning that a single participant might
not follow a change of timbre in such an incremental fashion. Rather participants
could think of sounds in categories and with rising roughness, an increasing number of
participants switch from round to jagged shapes. Similarly, statistical agreement for
sketch representations was only determined for an average participant in Section
and, in this research, significant results could not be obtained when looking at individ-
ual participants. In addition, if a specific, computed audio feature increases linearly
for a series of sounds, it does not mean that humans would perceive this as a linear
change in timbre. When thinking about a sound that is neither particularly rough
nor soft, it is likely that another more prominent feature, for example, thick or thin
would inform the perception of this sound and hence the sketch representation of it. In
fact, [Hayes et al.| (2022b)) found that relatively small, localised clusters emerge when
participants were asked to define sound within a timbre space according to descriptors
like rough or soft. A linear interpolation between the parameters of two FM synthe-
siser sounds might not be perceived as a linear transition in sound characteristics, but
rather different sound environments that emerge along this path. Given this analysis,
a categorisation approach appears to be more viable when designing a sketch-based
sound synthesiser. It should also be added that sketch to synthesiser mappings do not
have to be limited to timbre. An advantage of this design is that multiple parameters
can be represented with a single input. Revisiting the research of [Salgado-Montejo
et al. (2016) and M. B. Kussner et al.| (2014]) shows that sketch representations can
also serve to represent pitch or amplitude envelopes. Future work can explore how a
sketch input could manipulate these parameters at the same time, potentially using a
combination of mappings that are established through a data-driven machine learning
approach and hard-coded mappings that are based on findings from empirical stud-
ies. Given that colour and visual texture have been identified as common associations
with timbre in previous studies (Ward et al., [2006; Adeli et al., 2014; |(Gurman et al.,
2021} |Grill & Flexer, 2012), the exploration of polychromatic colour palettes, different
stroke widths and brush styles could be considered in further development to facilitate
multi-dimensional mappings.
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8. Conclusion

In two participant studies, 2320 free-form sound-sketches (560 from Study 1 and 1760
from Study 2) were collected with simple, monochromatic digital sketching interfaces.
Through a rigorous human-centred analysis sketches were categorised by their primary
representational approach. Several significant correlations between quantitative audio
and sketch features were found that align with findings from cross-modal matching
tasks. The results show that while sound-shape associations play a significant role
in sketched representations, humans incorporate other visual aspects like structural
complexity or texture as well or choose figurative representations of emotions or sound-
producing objects. Some level of agreement on how to represent sounds could be
found between participants which appears strongest for sounds that are dominated
by one sound characteristic. This research provides useful insights and suggestions for
designing a sketch-based sound synthesiser.
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Appendix A. Sound and sketch feature extraction

Table [AT] shows the values of extracted audio features for Study 1 and Study 2.
Table [A2] show the values of extracted sketch features for Study 1 and Study 2.
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Flatness Centroid RMS RMS Zero  Hard- Depth Bright- Rough- Warmth Sharp- Boomi-
Mean Mean Mean Slope  Cross. ness ness ness ness ness
Mean
Crackles 4.1 >i2< 1728 0.032 21 0.035 55 28 60 52 41 48 17
Telephonic 100 j 543 0.157 5 0.013 34 67 43 50 54 28 41
Strings éOQ * 1042 0.151 10 0.020 42 57 52 52 54 35 33
-5
String Grains 109 >§ 1177 0.107 22 0.031 52 40 56 56 49 37 25
Subbass 105 ﬁg 206 0.416 1 0.002 34 7 36 47 65 34 47
Noise ;09 T 7915 0.086 34 0.144 81 44 81 81 29 68 22
Piano 41105 ,; 542 0.051 1 0.013 42 65 49 40 54 31 42
Impact §08 Z 1047 0.097 8 0.011 65 7 60 49 51 49 39
Processed Guitar 1079; 229 0.344 3 0.002 30 80 39 40 63 37 46
Electric Guitar 41105 :k 1295 0.305 5 0.022 47 56 56 56 50 42 34
107°
(a) Study 1
Flatness Centroid RMS RMS Zero  Hard- Depth Bright- Rough- Warmth Sharp- Boomi-
Mean Mean Mean Slope  Cross. ness ness ness ness ness
Mean
Synth 1 4.9 z 562 0.0429 0 0.0199 34 42 39 29 39 29 21
Synth 2 104 »; 794 0.0614 0 0.0239 52 65 54 53 50 37 34
Synth 3 ?’)08 »; 2889  0.0266 0 0.113 67 42 75 72 30 61 9
Synth 4 éOS : 9670  0.0529 0 0.437 73 31 86 83 17 7 -6
Synth 5 106 : 247 0.0731 0 0.01 32 68 30 41 53 25 43
Synth 6 ?9 a; 8607  0.0374 0 0.355 76 34 84 7 20 76 12
Synth 7 %SO() z 2671 0.116 0 0.11 64 43 75 72 31 59 13
Synth 8 é()? z 327 0.0893 0 0.0116 11 62 30 42 48 23 40
Synth 9 é04 ﬂ; 1693 0.104 0 0.0583 63 46 67 70 39 48 25
Synth 10 ;)09 ﬂ; 1259 0.057 0 0.0511 48 45 65 68 40 40 23
Synth 11 105 ﬁ; 259 0.1 0 0.00995 3 64 27 0 56 26 44
Synth 12 §05 * 5493 0.0577 0 0.192 50 33 79 57 20 72 4
-5
Synth 13 iOS 1« 8715  0.0539 0 0.357 61 30 84 63 31 80 25
Synth 14 411(.)72 432 0.0466 0 0.0157 33 55 36 45 46 25 32
Synth 15 108 »; 515 0.0578 0 0.0194 39 61 46 56 52 29 33
Synth 16 105 »g 2768  0.0521 0 0.121 55 37 73 56 30 62 4
Synth 17 51)06 »; 9683 0.124 0 0.416 7 38 86 82 17 76 -1
Synth 18 41101 z 613 0.0758 0 0.0187 35 56 48 51 45 30 33
Synth 19 202 »; 569  0.0574 0 0.02 54 60 48 59 52 29 33
Synth 20 206 * 6691  0.0564 0 0.259 69 25 82 65 25 74 15
10°3
(b) Study 2

Table Al.: Sound features extracted from sound stimuli of both studies. For Librosa
features, the mean values of all windows @2 reported.



Number Average Average Average Inter-  Narrow Wide  Obtuse Right Acute

of  Length Time Speed  sections Curves Curves Angles Angles Angles

Strokes [px] [ms]  [px/ms] [1/100px] [1/100px] [1/100px] [1/100px] [1/100px] [1/100px]

Crackles 10.5 471 2796 0.22 1.78 0.55 0.60 0.94 0.22 0.67
Telephonic 6.0 1091 4613 0.27 1.05 0.16 0.37 0.55 0.08 0.26
Strings 3.9 900 4379 0.26 0.31 0.10 0.23 0.28 0.06 0.09
String Grains 10.1 914 3340 0.28 1.48 0.24 0.21 0.58 0.15 0.54
Subbass 4.5 1328 6154 0.23 0.92 0.17 0.43 0.51 0.08 0.30
Noise 12.8 1816 3540 0.57 2.37 0.32 0.22 0.61 0.16 0.56
Piano 3.8 586 3020 0.29 0.61 0.06 0.31 0.20 0.02 0.06
Impact 7.2 1239 3313 0.51 1.12 0.14 0.28 0.24 0.05 0.31
Processed Guitar 4.3 1124 4707 0.33 0.43 0.17 0.23 0.49 0.09 0.22
Electric Guitar 5.3 1121 4561 0.33 0.93 0.12 0.12 0.35 0.08 0.40

(a) Study 1

Number Average Average Average Inter-  Narrow Wide  Obtuse Right Acute

of  Length Time Speed  sections Curves Curves Angles Angles Angles

Strokes [px] ms]  [px/ms] [1/100px] [1/100px] [1/100px] [1/100px] [1/100px] [1/100px]

Synth 1 34 1002 3021 0.44 1.8 0.3 0.84 1.1 0.13 0.31
Synth 2 3.1 876 2923 0.4 2.6 0.55 0.96 1.1 0.24 0.53
Synth 3 2.9 1186 3274 0.46 2.0 0.42 0.88 1.1 0.079 1.2
Synth 4 3.9 2125 3178 0.74 5.4 0.32 0.39 0.86 0.23 14
Synth 5 3.0 1636 3239 0.53 1.2 0.9 1.2 1.7 0.53 0.62
Synth 6 4.3 1444 3344 0.49 3.7 0.75 0.67 1.4 0.19 1.6
Synth 7 3.9 3644 2725 1.2 5.8 0.5 0.54 1.0 0.19 1.5
Synth 8 2.03 936 3666 0.31 0.74 0.37 0.84 0.58 0.096 0.21
Synth 9 5.2 1815 2752 0.79 5.7 0.42 0.98 0.95 0.19 0.7
Synth 10 3.9 1555 3008 0.56 2.2 0.45 1.0 1.6 0.18 0.48
Synth 11 2.1 834 3682 0.27 0.6 0.19 1.0 0.92 0.082 0.12
Synth 12 2.6 1352 3533 0.46 2.9 0.34 0.61 0.68 0.12 0.63
Synth 13 3.8 1239 3125 0.48 3.2 0.41 0.68 0.81 0.14 0.6
Synth 14 2.5 995 3181 0.37 0.97 0.5 0.9 0.78 0.045 0.2
Synth 15 2.8 1543 2984 0.55 3.3 0.62 0.74 1.5 0.31 1.4
Synth 16 2.7 1104 2816 0.48 3.1 0.63 0.78 1.1 0.18 0.72
Synth 17 2.3 3055 3171 1.1 6.4 0.34 0.24 0.58 0.15 1.2
Synth 18 2.6 1269 3555 0.39 2.0 0.35 0.68 0.72 0.11 0.34
Synth 19 3.3 1854 3279 0.54 3.8 0.83 0.89 1.6 0.31 14
Synth 20 4.1 1993 2961 0.67 3.2 0.26 0.54 0.71 0.12 0.59

(b) Study 2

Table A2.: Sketch features for both studies. The mean value from all participants is

presented for each sound stimulus.
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