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ABSTRACT10

This paper investigates the influence of cross-modal associations on visual represen-11

tations of sound. Compared to established methods that ask study participants to12

match existing stimuli, this research explores how people represent sound through13

free-form graphical sketches when focusing on musical timbre. A total of 2320 sound-14

sketches were collected in two studies that included 28 and 88 participants. High-level15

sketch categories were established through qualitative analysis of participant inter-16

views and a card-sorting exercise. Inter-participant agreement on representations17

and correlations between the auditory and visual domains was computed through18

statistical analyses of quantitative sound and sketch features. The results show that19

while sound-shape associations play a significant role in sketched representations,20

humans incorporate other visual aspects like structural complexity or texture or21

choose figurative representations of emotions or sound-producing objects. Some level22

of agreement on how to represent sounds could be found between participants, which23

appears strongest for sounds dominated by a single perceptual attribute. The analy-24

sis further suggests that sound-shape associations found in sound-sketches align with25

findings from perceptual matching tasks. This research is motivated by designing26

novel perceptually-informed mappings for digital music production and the results27

presented in this paper lay the groundwork for the development of a sketch-based28

sound synthesiser.29
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1. Introduction33

Humans make sense of sound in various ways often connecting different sensory do-34

mains. Cross-modal associations describe how a stimulus from one modality can induce35

a response in another modality. While often reported between sounds and colour,36

they can occur across various modalities, for example between colours and odours,37

sounds and tastes or sound and shapes (Spence, 2011). Cross-modal associations are38

sometimes wrongly referred to as synaesthesia. Synaesthesia is a rare condition with39

estimates of prevalence in the population ranging from 5% (Cuskley et al., 2019)40

to 0.5% Ramachandran and Hubbard (2001) and 0.05% Baron-Cohen et al. (1996).41
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Synaesthetes experience cross-modal connections involuntarily and consistently: the42

same stimulus always induces the same response. Cross-modal associations on the43

other hand are experienced in some form by most people, but connections tend to44

be far less consistent and might only occur situationally. Despite this difference, in45

a study investigating colour-to-sound mappings control participants and synaesthetes46

employed the same heuristics for linking auditory and visual domains, such as con-47

necting pitch with lightness (Ward et al., 2006). The authors conclude that this type48

of synesthesia involves utilising mechanisms similar to those in typical cross-modal49

perception.50

Figure 1.: Visual stimuli used in cross-modality experiments (Köhler, 1929). The left
shape is overwhelmingly associated with the made-up word maluma or boubou and
the right one with takete or kiki.

One of the earliest examples of cross-modal research is provided by Wolfgang51

Köhler, a member of the Gestaltpsychology movement in the 1920s, who found52

that people associate the made-up words takete or kiki with sharp, jagged shapes53

and maluma or boubou with soft, round shapes (Köhler, 1929). The effect was54

confirmed in multiple studies (Ramachandran & Hubbard, 2001) and generalised to55

all phonemes (Nielsen & Rendall, 2013). It was observed across cultures (Davis, 1961;56

Taylor & Taylor, 1962; Bremner et al., 2013), age groups including toddlers (Maurer57

et al., 2006), to some extent, with the visually impaired (Bottini et al., 2019) and58

between movement and phonemes (Shinohara et al., 2016). Similar associations were59

not only found for phonetic sounds but also for musical instruments (Adeli et al.,60

2014; Gurman et al., 2021) and abstract sonic textures (Grill & Flexer, 2012). While61

these studies explicitly ask participants to match stimuli from different modalities,62

a different approach measures how a stimulus in one domain can influence the63

perception of another stimulus in a different domain. A famous example is the64

McGurk effect (MacDonald & McGurk, 1978), a multisensory illusion that occurs65

when merging video and audio recordings of vocalising different consonants. Other66

examples include the impact of a mug’s colour on the taste of coffee (Van Doorn67

et al., 2014) and the effect of piano music on sexual attractiveness (Marin et al., 2017).68

69

The work presented in this paper focuses on sound-shape associations, a subset70

of cross-modality research, that describe how people connect timbre with geometrical71

shapes (Sidhu & Pexman, 2018). Cross-modal associations are typically investigated72

by asking participants to match visual and sound stimuli. However as pointed out73

by Soraghan et al. (2018), this approach can show which of the presented stimuli74

participants are most likely to match and does not account for whether a participant75

might favour a different representation altogether. This research asked participants in76

2



two studies to create monochromatic sketch representations of their associations with77

sound. The first study uses an exploratory design that imposes minimal restrictions78

to gain an understanding of the variety in which participants will represent different79

types of sound graphically. The second study uses a more controlled design that80

focuses on simple representations of sound produced by a frequency modulation81

(FM) synthesiser. Alongside sound-sketches, qualitative feedback was collected82

from participants through interviews and surveys to find out how the tasks were83

approached. The analysis categorises the various representational approaches and84

tests for correlations between sounds and shapes through statistical analyses of85

quantitative audio and visual features. The results lay the groundwork for the broader86

context of this research that aims to determine if a graphical sketch input can be87

used to help improve interaction with digital music production software, specifically88

for controlling digital synthesisers. The design process of the second study included89

the development of the digital sketching interface from a simple, generic sketchpad90

to a specialised sketching interface that could be used for controlling a sketch-based91

synthesiser.92

93

This paper first introduces relevant research into visual representation of sound94

with a focus on sound-shape associations, musical timbre and sketch recognition95

in Section 2. Methods and material for both studies are described in Section 3.96

The results for both studies are presented in parallel in multiple sections: analysis97

of participant feedback in Section 4, sound-sketch categorisation in Section 5 and98

statistical feature analysis in Section 6. Discussion and conclusion can be found in99

Sections 7 and 8. Acknowledgement of the research funding body and a disclosure100

statement including reference to ethical approval for all studies are found in Sections 9101

and 10. A detailed presentation of extracted audio and visual features is provided in102

Appendix A.103

2. Background104

This section first gives an overview of cross-modal representations of sound with a focus105

on sound-shape associations that build the basis for this research. It then continues to106

introduce research into timbre and sketch recognition that is relevant for the analysis107

of the user studies.108

2.1. Cross-modality in visual representations of sound109

Cross-modality does not only play a role in human perception of the world but also110

in executing certain actions. Thoret et al. (2016) found that participants drew circles111

with a more elliptical skew when listening to sounds that evoked elliptical kinematics.112

Salgado-Montejo et al. (2016) showed the influence of pitch on the location of free113

hand movement. They also found movement to be more jagged for higher pitches and114

rounder for lower pitches. Both examples show that consistencies can be found be-115

tween people not just in matching or rating tasks but also when given free agency over116

their response. However, participants’ actions were not visualised posing the question117

of the influence of an action’s graphical representation on the cross-modal response.118

In visual art, connections between the auditory and visual domains are a recurring119

theme. Notably, Russian artist Wassily Kandinsky developed multiple hypotheses on120

associations between shapes, colours and music leading to a number of cross-modal121
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artworks inspired by pieces of composer Arnold Schönberg (Rucsanda et al., 2019).122

Consistent associations were found between complex stimuli of visual artworks and123

musical compositions (Albertazzi et al., 2015) and piano music excerpts and simple124

visual structures (Clemente et al., 2020). M. Küssner (2014) investigated how par-125

ticipants represent pure tones varied in pitch, loudness and tempo through drawing126

and produced similar findings about the connection of space and pitch as Salgado-127

Montejo et al. (2016). While timbre is acknowledged to play a role in cross-modal128

associations, the aforementioned research focuses on the musical context of the sound129

stimuli. Focusing on music timbre and visual texture, Giannakis and Smith (2000)130

and Giannakis (2006) provide an overview of audio-visual mappings for computer ap-131

plications. They critically point out the difference between physical and perceptual132

representations of sound and arbitrary and sensory mappings. Grill and Flexer (2012)133

showed how sensory mappings, which are based on cross-modal associations, can help134

participants retrieve sound samples outside of a specific musical context. Knees and135

Andersen (2016) further developed this idea by proposing sound retrieval from a graph-136

ical sketch input and built a non-functioning prototype of such a system. Compared to137

Küssner’s research, timbre plays a more dominant role here which participants tend to138

visualise through shapes, contours or textures - described by the researchers as sym-139

bolic representations. Recent research further investigated how participants represent140

different timbres in a more controlled way and showed how a functioning sketch-based141

sound retrieval pipeline could be implemented with the help of deep learning (Engeln142

& Groh, 2020; Engeln et al., 2021). The results showed that participants chose ab-143

stract, geometrical shapes as well as more complex images to represent sound. Work144

by the authors produced similar results (Löbbers et al., 2021) and further suggests145

that, to some level, free-form sketches consist of universally recognised patterns that146

allow participants to extract information about a sound’s characteristic (Löbbers &147

Fazekas, 2022). The research presented in this paper takes a closer look at how to clas-148

sify different representational approaches and collects a comprehensive sound-sketch149

dataset.150

2.2. Description of musical timbre151

Musical timbre is generally described as the qualitative aspects of sound that cannot152

easily be quantified like loudness or pitch; however, it remains a concept that lacks153

a unified definition. An often-cited definition from the American National Standards154

Institute (ANSI) states that timbre is the auditory attribute that enables listeners to155

distinguish two sounds with the same loudness and pitch (ANSI, 1994). This is often156

criticised for only describing what timbre is not, but not defining what it actually157

is (Siedenburg & McAdams, 2017). While humans typically have an intuitive under-158

standing of what constitutes timbre, the language they use to describe it varies indi-159

vidually (Saitis et al., 2020) often borrowing concepts of other sensory domains (Saitis160

& Weinzierl, 2019). Despite this lack of a common vocabulary, Wallmark and Kendall161

(2021) argue that some concepts like luminance (bright), texture (rough), and mass162

(heavy) widely appear across language groups. In the realm of contemporary music163

production, where digital technologies play a pivotal role, musical timbre occupies164

a prominent role for many modern music styles that distinguish themselves through165

their ‘specific’ sound rather than harmony, melody or musical structure (Provenzano,166

2018; Blake, 2012). Finding or crafting a desired sound becomes an integral part of167

the production process which often involves searching large sample libraries or tweak-168
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ing software parameters. These parameters often relate to the underlying digital signal169

processing (DSP) rather than perception of sound which can make it difficult to realise170

sound ideas or explore sonic spaces in an intuitive way (Seago, 2013). The perceptual171

attributes used to process a sound can be influenced by the source itself or individ-172

ual factors of the listeners like preference, domain knowledge, cultural upbringing or173

listening context. This becomes apparent in the descriptors of sound libraries and syn-174

thesiser presets in digital audio production that can range from describing an acoustic175

instrument (keys, strings, drums), a compositional function (lead, pad, bass), a play-176

ing style (staccato, legato, arpeggio), references to genre (rock, hip-hop), hardware177

(808, clavinet), jargon (wobble bass, acid), mood (happy, sad) or describing a sound’s178

timbre directly often with the help of cross-modal associations (bright, rough, shrill).179

Without tagging guidelines or a unified approach to describing sound, retrieving spe-180

cific sounds from sample or preset libraries can be a cumbersome task that impairs181

the creative process. An increasingly popular approach for the organisation of these182

libraries is to display samples in a 2-dimensional space where similar samples are dis-183

played close to each other (Fried et al., 2014; Bruford et al., 2019; Garber et al., 2021).184

The groundwork for this approach was laid by Grey (1977) and further popularised by185

Iverson and Krumhansl (1993) and McAdams et al. (1995), who obtained dissimilarity186

ratings through participant studies and using multi-dimensional scaling (MDS) to low-187

dimensional timbre space. For applications that are designed to work with a user’s own188

sample library like the Timbral Explorer1 it is not feasible to use samples annotated by189

humans. Instead, they use computationally extracted audio features. A popular and190

successful feature is the mel-frequency cepstral coefficient (MFCC) that can be used as191

input for deep-learning classification of diverse environmental sounds (Cramer et al.,192

2019). However, MFCCs are not very good at communicating sound characteristics to193

humans or helping explain the perception of sound (Siedenburg et al., 2016). Other194

popular computational features that, while still based in acoustic feature analysis,195

show better alignment with human perception are spectral flatness and zero-crossing196

rate that describe a sound’s noisiness, spectral centroid that serves as a measure for197

brightness and the root-mean-square (RMS) describing a sound’s loudness (Peeters,198

2004; McFee et al., 2015). Pearce et al. (2019) aim to bridge the disconnect between199

computational features and features relevant to human perception by developing a200

model that, through a mixture of human-annotated sound samples and computed fea-201

tures, predicts a sound’s hardness, depth, brightness, roughness, warmth, sharpness,202

booming and reverberation. Further research explores how, prompted by adjective,203

participants synthesise novel timbres through frequency modulation (FM) (Wallmark204

et al., 2019). Similarly, Hayes et al. (2022a) implemented a simple FM synthesiser to205

run in a web browser and collected a dataset of annotated synthesiser sounds through206

an online participant study. Participants were presented with a prompt to change a207

reference sound and then asked to annotate the result. The prompts were presented in208

the form make the sound less/more: bright/rough/thick. The attributes were derived209

from the luminance-texture-mass (LTM) model (Zacharakis & Pastiadis, 2015, 2016)210

that suggests that timbre descriptions can sufficiently be explained by these three211

dimensions for sounds with similar amplitude envelopes.212

1https://www.audiocommons.org/2019/01/30/timbral-explorer.html
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2.3. Sketch recognition213

To statistically evaluate cross-modal associations between sound and shapes both do-214

mains have to be described as quantitative features. The extraction of information from215

hand-drawn sketches by a computer is called sketch recognition. Typical applications216

include recognition of handwriting or image retrieval from a sketch input. Sketches217

can be analysed as rasterised images using a computer vision approach. A benchmark218

task is the classification of handwritten digits with the MNIST dataset that is typi-219

cally achieved through machine learning with convolutional neural networks (CNNs)220

producing the best results (LeCun, 1998; Deng, 2012). Representing sketches sequen-221

tially either through vectorisation or collecting sketches digitally gives the opportunity222

for a wider range of analyses. The most notable example is seminal work by Ha and223

Eck (2017) that introduced the SketchRNN architecture that uses a variational au-224

toencoder (VAE) built on recurrent neural networks (RNNs). SketchRNN was trained225

on Quick, Draw! 2, a large-scale, open-source dataset with over 50 million sketches di-226

vided into categories ranging from simple geometric shapes to complex representations227

of animals and objects. Quick, Draw! inspired a large number of projects by enabling228

researchers to experiment with pre-train models and (re-)train them for specific tasks.229

While SketchRNN produces impressive results for sketch classification and gener-230

ation, algorithmic approaches might be more suitable for describing the shape of a231

sketch. The ShortStraw algorithm (Wolin et al., 2008) provides a simple, effective232

tool to extract corner points. Xiong and LaViola Jr (2009) extended the algorithm to233

also recognise curve points. Sezgin (2001) further show that information can not only234

be extracted from a sketch’s shape but also from the sketching speed, for example,235

corner points can be estimated from a decrease in speed before each point. In the con-236

text of sound-shape associations, sketch or movement responses are often interpreted237

qualitatively by humans rather than computationally as it can be seen in the works238

by Salgado-Montejo et al. (2016) and Knees and Andersen (2016) discussed in Sec-239

tion 2.1. M. Küssner (2014) proposes a computational approach to extracting features240

from sound-sketches that, however, expect a representation inside a grid where the241

x-axis represents time. Engeln et al. (2021) harness advancements in deep learning for242

sketch recognition to implement a computational method for free-form sketch-based243

sound retrieval. However, an end-to-end retrieval approach might not reveal which244

aspects of a sketch are relevant to sound-shape associations.245

3. Methods and Material246

In order to investigate sound-shape associations in free-form sketch representation,247

two studies were conducted resulting in two sound-sketch datasets and correspond-248

ing qualitative and quantitative analyses. In both studies, participants were asked to249

sketch their associations with sound stimuli using a digital interface. For both stud-250

ies, quantitative features were extracted from the sound stimuli and sound-sketches251

to investigate sound-shape connections through statistical correlations. Study 1 was252

accompanied by qualitative interviews to gain a deeper understanding of how partici-253

pants chose their representations. This research further provides high-level categories254

for the broad classification of sound-sketches that were achieved through a card-sorting255

exercise in Study 1 and an automated, machine-learning approach in Study 2.256

2https://quickdraw.withgoogle.com/
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3.1. Design of perceptual studies257

As discussed in Section 2.1, relatively little research has been conducted on how hu-258

mans represent sounds through graphical sketching. The two studies presented in this259

paper collect sound-sketches by combining existing research that asks participants to260

match auditory and visual stimuli or undertake specific hand movements while lis-261

tening to sound with methods of digital sketch collection introduced in Section 2.3.262

In both studies, participants are presented with a number of different sound stimuli263

and are asked to sketch their personal association with them. The first study follows264

an exploratory design with minimal instructions for participants and different cate-265

gories of sound from abstract synthesiser pads to acoustic instruments to obtain a wide266

overview of different representational approaches. Informed by the results of Study 1,267

the second study followed a more controlled design with a further developed interface268

and a narrower set of synthesised sound stimuli that encouraged simpler, more ab-269

stract sketch representations with a stronger link to sound-shape associations. Besides270

collecting sound-sketches, it is important for this research to understand the reason-271

ing behind different approaches. Qualitative feedback can give a more detailed insight272

into the thought processes of a participant and might yield information that cannot273

be captured through quantitative data. For Study 1, qualitative data was collected274

through behavioural observation and a semi-structured interview that probed partic-275

ipants to reflect on their approaches and the interaction with the digital interface.276

Study 2 gave the option to provide brief written feedback and asked participants to277

answer a modified System Usability Scale (SUS) questionnaire (Lewis, 2018). All ver-278

bal feedback was analysed through thematic analysis (Braun & Clarke, 2006; Stuckey,279

2015). General demographic data including age, gender, occupation and country of280

origin was collected through survey questions. In addition, the section of the Gold-281

smiths Music Sophistication Index (Gold MSI) (Müllensiefen et al., 2014) relating to282

musical training and engagement with music was used to categorise participants by283

music proficiency.284

3.2. Material285

Both studies are set entirely in a digital environment and sound stimuli are selected286

with regard to timbral differences. Participants for Study 1 completed the study on287

the same laptop and, to keep similar conditions, only laptop or desktop devices were288

allowed for Study 2.289

3.2.1. Study 1290

The study was conducted in person using the touchpad on a 15” MacBook Pro and291

a pair of Beyerdynamic DT 770 headphones in calm, indoor locations. Ten stimuli292

with distinct timbral characteristics were crafted in reference to two cross-modal ex-293

periments presented in Section 1, which examine musical sounds (Adeli et al., 2014)294

and synthesized sounds and textures (Grill & Flexer, 2012). This approach aims to295

broaden the investigation of cross-modal representations beyond more narrowly de-296

fined categories to a wider range that could be encountered in a digital music creation297

environment. The stimuli can be divided into harmonic sounds that include musical298

instruments (Piano, Strings, Electric Guitar) and synthesised pads (Telephonic, Sub-299

bass) and inharmonic sounds that include environmental sounds (Impact) and abstract300

textures (Noise, String Grains, Crackles, Processed Guitar). Piano and Strings were301
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created with virtual instruments in the Kontakt 5 plugin by Native Instruments, Elec-302

tric Guitar was recorded with an audio interface via line-in. Impact was taken from the303

online audio repository freesound.org and Telephonic, Subbass, Noise, String Grains,304

Crackles and Processed Guitar were designed with built-in plugins in the digital audio305

workstation Ableton Live 10. Harmonic sounds were pitched to the MIDI note C3306

which lies within the frequency range used in the reference experiments. All sound307

stimuli are monophonic and normalised for equal loudness. They last eight seconds308

with varying amplitude envelopes and include trailing silence to mark a clear endpoint309

during looped playback. The perceived base frequency may vary due to prominent har-310

monics.3311

3.2.2. Study 2312

The study was conducted entirely online. An initial audio check as well as a mid-study313

attention test ensured that participants listened to the audio playback either through314

headphones or speakers. Twenty different FM synthesiser sounds were selected from315

the dataset by Hayes and Saitis (2020) discussed in Section 2.2. All sounds have a316

short attack and high sustain to ensure that participants focus on timbre rather than317

amplitude envelope. The FM synthesiser was implemented with the AudioWorklets318

interface of the Web Audio API to synthesise sound directly in the browser rather than319

using audio samples which enabled continuous playback of a sound without looping.320

All sounds were pitched to the MIDI note A3 and loudness-normalised.4321

3.3. Interfaces322

For both studies, digital sketching interfaces were used that can run in a web browser.323

This makes it possible to collect sketches directly as sequential data as presented in324

Section 3.7 and collect data online. As this research investigates sound-shape asso-325

ciations, the interfaces only allow monochromatic sketches with fixed stroke widths.326

Sketch analysis of Study 1, described in the following Sections, suggests that sound-327

shape associations more strongly inform simple sketches. To investigate that connec-328

tion in greater detail, the interface was developed from a generic to a specialised design329

through an iterative design process that sought to encourage simple sketches between330

participants without majorly impacting their perceived sense of expressiveness and331

autonomy.332

3.3.1. Study 1333

The requirements for this interface, that is illustrated in Figure 2, were that par-334

ticipants can only express their ideas through monochromatic strokes, but are not335

otherwise limited or supported. The black canvas was chosen to clearly distinguish336

the sketching area from the rest of the website. No option to partially or fully erase337

a sketch was provided so that participants would not revise their original idea. While338

the goal of Study 1 was to gain insights into the different sketched representations of339

sound, it also provided feedback on how to develop the interface for sound-sketching340

tasks. Feedback evaluation showed that, overall, participants were unsatisfied with the341

3All sounds for Study 1 can be accessed online at https://bit.ly/3ta6crU together with the sketches pro-
duced by participants.
4All sounds for Study 2 can be accessed online at https://sfrl.github.io/study2 gallery/ together with

the sketches produced by participants.
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Figure 2.: Interface for Study 1: generic design that allows for fixed-width, white strokes
on a black canvas with a fixed size of 750x750 pixels. There are no sketch length limits,
stroke simplification and undo or reset options. Sketch points are connected by straight
lines.

interface, especially in regards to sketching straight lines or smooth transitions. In ad-342

dition, the canvas proved to be too small with multiple participants sketching over the343

edges. The black background received positive comments, but for some participants, it344

seemed to have artistic rather than purely functional meaning. While the design was345

successful in forcing participants to stay with their original idea, it did not take into346

consideration that participants might want to correct technical mistakes rather than347

change their overall approach.348

3.3.2. Study 2349

The feedback from Study 1 was addressed in the further interface design. Stroke simpli-350

fication and spline interpolation were implemented to make it easier to sketch straight351

lines and smooth transitions. The canvas automatically stretches to the size of the352

browser window to prevent sketches from extending over the edges. A reset button353

ensures that participants can start over, but an erase or undo function was withheld354

to prevent participants from focusing on retouching their representations. These de-355

sign choices are similar to the Quick, Draw! interface introduced in Section 2.3 which356

makes collected sketches compatible with their dataset and deep-learning architecture.357

A major difference between the two interfaces is the length limit introduced in Study358

2. The goal of this research is to collect sketches that encode sound characteristics359

through shape which typically results in simple, abstract representations. However,360

the categorisation of Study 1 sketches, as described in detail in Section 5, show a sig-361

nificant number of figurative representations like scenes or objects. As these sketches362

are on average longer, limiting the length permitted by the interface was expected363

to reduce those types of representations. This was tested in three small-scale design364

studies with 10-15 participants each. Different designs were evaluated on how well365

they guided participants towards simple, abstract representations while maintaining366

the feeling that the interface allows them to be expressive. This concluded in the setup367
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Figure 3.: Interface for Study 1: Specialised design that allows for fixed-width, black
strokes on a white canvas that scales to a participant’s browser window (a minimal
size of 800x600 pixels was enforced). The sketch length is limited to the range of 30
to 150 points. A sketch can only be submitted if it exceeds the lower length limit. If a
participant continues sketching after reaching the upper limit, sketch points are erased
from the start. A small meter in the top left corner of the canvas indicates the current
stroke length. Participants can reset the canvas to start over. The Ramer-Douglas-
Peucker algorithm (Douglas & Peucker, 1973) was used for stroke simplification and
stroke points were connected with Catmul-Rom splines (Catmull & Rom, 1974).

described in Figure 3.368

3.4. Participants369

Recruitment was open to all adults over the age of 18. The aim of these studies was370

to find out about sound-shape associations by sampling from the general population.371

As engagement with music was expected to have an influence on representations, for372

Study 1 musicians and non-musicians were recruited in equal parts.373

3.4.1. Study 1374

Twenty-eight participants were recruited through mailing lists and in person at the375

School of Electronic Engineering and Computer Science at Queen Mary University376

of London. This group was divided equally by gender (14 female, 14 male), 25 were377

adults below the age of 34 (three between 34 and 49), 22 had a Western background378

(16 from Europe, 4 from North America, 2 from South America) and 5 an Eastern379

background (4 from China, 1 from India) with one participant preferring not to disclose380

this information. A participant was defined as a musician if they responded to having381

at least one year of formal music education and engaged in musical activity (playing382

an instrument, producing or composing music) at least once a month. This resulted383

in 14 musicians and 14 non-musicians.384

3.4.2. Study 2385

Eighty-eight participants were recruited through the online platform Prolific.5 The386

majority of participants were female (48 female, 38 male, 2 other) and 84 were aged387

between 18 and 33 (M = 22.5, SD = 4.6). All participants had a Western background388

(56 from North America, 16 from Europe, 13 from South Africa and 3 from South389

America) with the majority coming from Mexico (54 participants). Sixty-six were390

5https://prolific.co/
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students and 28 stated to have had at least one year of formal music education and391

actively engage in musical activity at least once a month.392

3.5. Procedure393

A similar procedure was used for both studies. As Study 2 was conducted online a394

more robust digital environment was deployed to ensure that participants completed395

the study successfully.396

3.5.1. Study 1397

Figure 4.: Participant sketching a sound in Study 1

Participants were first asked to adjust playback audio to a comfortable measure398

using white noise as a reference. They then completed a questionnaire collecting de-399

mographic data and information about their experience with music. Participants were400

then asked to familiarise themselves with the sketching interface without audio before401

they were presented with the sound stimuli. The study intended to encourage a spon-402

taneous response, therefore no information about the range of sounds was provided403

and participants were instructed to sketch what they believed to best represent each404

sound stimulus. Looped playback started automatically with the option to pause and405

resume. Each sound was played twice in a randomised order resulting in a total of406

twenty sketches per participant. After completion, a semi-structured interview was407

conducted asking participants how they approached the task and whether they found408

it difficult. No time limit was given and the study typically took twenty to thirty409

minutes to complete.6410

6The setup for Study 1 can be accessed online at https://bit.ly/3j3FkVO.
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3.5.2. Study 2411

Participants were first presented with a set of information ensuring that they use a412

laptop or desktop device and are able to listen to sound either through headphones413

or loudspeakers. This was followed by a short introduction of the study that included414

guidelines on representing sounds in an abstract rather than figurative way, a short415

explanation of the sketching interface, a guide to adjust playback volume to a com-416

fortable level and a check that the browser window size was at least 800×600 pixels.417

Before starting the main task, participants were given the opportunity to familiarise418

themselves with the interface in two test rounds in which they were asked to sketch419

their associations with an imagined calm and noisy sound. For the main task, sound420

stimuli were played back automatically in a randomised order with the instruction Lis-421

ten to the sound and draw your association. An attention test was played back after422

completing half of the task asking participants to sketch the number four instead of a423

sound. The study concluded with a survey asking participants about their experience424

with the study and the interface and collecting demographic data, experience with425

music and the hardware they used to complete the study.7426

3.6. Sketch categorisation427

The first step of the analysis categorises different representational approaches that428

participants deploy and investigates to what extent sound-shape associations inform429

them. The sketches produced in Study 1 were categorised in an open card-sorting430

study by six participants (4 female, 3 musicians) who did not take part in the main431

study. They were asked to sort the collected sketches into three to ten categories432

including short written descriptions. The study was completed remotely within three433

hours on participants’ devices following detailed instructions that can be accessed434

online.8 Following the methodology of Paea and Baird (2018), the results were435

encoded and reduced in dimensionality using principal component analysis (PCA).436

K-means clustering was used together with the silhouette coefficient (Rousseeuw,437

1987), a measure of cluster goodness, to find the most suitable number of clusters438

between three and ten. Clusters were named and described qualitatively based on439

keywords that participants used in their category descriptions.440

441

Due to the higher participant number, Study 2 produced a considerably larger442

number of sound-sketches and the categorisation process was automated with the443

help of machine learning. A variational autoencoder (VAE) using the SketchRNN444

architecture was pre-trained on the Quick, Draw! categories Triangle, Square, Circle,445

Line, Squiggle and Zigzag before feeding in sound-sketches from Study 2. The446

resulting 128-dimensional latent representation of the dataset was reduced with PCA447

and the best number of clusters was determined with K-means and the silhouette448

coefficient as described above. Clusters were named following the findings from Study449

1.450

451

Pearson’s Chi-squared test was used to test whether sounds are represented452

equally across sketch categories or if certain types of sound can be connected to a spe-453

cific category. Similarly, Cochran’s Q test was used to assess whether a participant’s454

musical proficiency has an influence on how their sketches are categorised.455

7The setup for Study 2 can be accessed online at https://sketching-sounds.web.app/.
8https://youtu.be/LXTlnaAciWw
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3.7. Quantitative analysis of sketch and sound features456

All sketches are saved digitally as sequential data in nested arrays. Each stroke is
described in a separate array that consists of sketch points described by their x and y
positions and timestamps. A sketch is rendered into an image by connecting all points
within each stroke array. To describe sketches quantitatively, a number of features
can be calculated directly from the data structure and through simple arithmetic
operations as demonstrated in Equations 1, 2 and 3, where N is the number of strokes
in a sketch and L, T and S are their average length, completion time and sketching
speed. The number of points in the kth stroke is described by nk. Each point has a
position xki

and timestamp tki
. The Euclidean distance between two points is described

by d(p, q).

L =
1

N

N∑
k=1

nk∑
i=2

d
(
xki

, xki−1

)
(1)

T =
1

N

N∑
k=1

tknk
− tk1

(2)

S =
1

N

N∑
k=1

nk∑
i=2

d
(
xki

, xki−1

) 1

tknk
− tk1

(3)

Sound-shape associations are usually reported with respect to a shape’s contour457

focusing on their ‘jaggedness’ or ‘roundness’ (Adeli et al., 2014; Grill & Flexer, 2012).458

As illustrated in Figure 5, these attributes were quantified by extracting corner points459

divided into obtuse, right and acute angles and curve points divided into wide and460

narrow shape algorithm (Wolin et al., 2008; Xiong & LaViola Jr, 2009). A qualitative461

review suggested that sketches differ by the number of stroke intersections that can be462

interpreted as the ‘noisiness’ of a sketch. The number of intersections was determined463

using an adaptation of Bresenham’s rasterisation algorithm (Bresenham, 1965). Prior464

to extracting features, the sketch data was cleaned by removing consecutive points465

with the same position and merging two strokes if a starting point was within a five-466

pixel distance to an endpoint. The number of intersections, corner and curve points is467

reported relative to the total stroke length of a sketch.468

In order to investigate sound-shape associations through statistical analysis, the469

sound stimuli also have to be described using quantitative features. This was ac-470

complished by computing the mean values of Centroid Frequency, Spectral Flatness,471

Zero Crossing and Root Mean Square Power (RMS) for each sound using the Librosa472

Python library (McFee et al., 2022) with an FFT window size of 2048 and hop length473

of 512. In addition, the timbral models by Pearce et al. (2019) provided quantified474

measures of Hardness, Depth, Brightness, Roughness, Warmth, Sharpness and Boomi-475

ness which can more easily be related to human perception of sound. The additional476

feature RMS Slope, describing how continuous or intersected a sound is, was quantified477

by the slope between prominent extrema in the RMS envelope.478

The sketch categories described in Section 5 provide a qualitative description of rep-479

resentational approaches. The quantitative set of features described in this section is480

used to investigate sound-shape associations statistically. Spearman’s rank correlation481

coefficient is used to find out which, if any, visual features correlate with which audio482

features. As a linear perceptual relationship between features cannot be assumed and483

the underlying distribution is unknown, the non-parametric Spearman test was chosen484
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(a) Intersection detection
using an adaptation of Bre-
senham’s rasterisation algo-
rithm (Bresenham, 1965).
The size of the red dots cor-
responds to the number of
intersections at that point.

(b) Feature point detection
with the ShortStraw algo-
rithm (Wolin et al., 2008;
Xiong & LaViola Jr, 2009).
Stroke start/end points are
coloured green/blue and
corner/curve points are
coloured red/yellow.

(c) Different curve shapes
according to Xiong and
LaViola (Xiong & LaVi-
ola Jr, 2009). For this study,
a narrow curve was defined
with α < 90◦ and a wide
curve with α ≥ 90◦.

Figure 5.: Sketch feature extraction

as it can find not only linear but monotonic relationships in general. The correlation485

analysis uses mean values of visual features for each sound. To ensure that averaged fea-486

tures still pose meaningful sketch descriptions the inter-rater reliability was determined487

using the ICC(2,k) model intraclass correlation coefficient (ICC) (Koo & Li, 2016).488

The ICC(2,k) measures absolute agreement of average raters by averaging responses489

of k raters for each subject. In this context, sound stimuli were defined as subjects and490

sketch features as measurements. Sketch features were first log-transformed to meet491

the normal distribution assumption of the ICC. This approach was chosen because492

perceptual data typically includes large variance and patterns emerge more clearly493

when observing averages. This means that results will provide information about the494

average sound-sketch representation derived from multiple participants, but might not495

be applicable for predicting or describing sketches of an individual.496

4. Qualitative feedback analysis497

Qualitative feedback was given in a semi-structured interview in Study 1 which pro-498

vided a broad picture of participants’ approaches and laid the groundwork for the499

development of Study 2. A part of these results is illustrated in Figure 6. In Study500

2, brief qualitative feedback was given in written form and supported by quantitative501

survey responses. This section first focuses on feedback about the task itself and then502

summarises feedback about the interaction with the interface.503

4.1. Sketching task504

Task difficulty was reported as easy by 50%, neutral by 21% and hard by 29% of505

participants in Study 1 which changed to 84%, 9% and 7% in Study 2. Despite the506

positive skew in Study 2, mixed responses were recorded to the question of whether507

it was easy to think about sound in a visual way with 50% agreeing, 27% disagree-508
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Figure 6.: Reoccurring concepts when describing the sounds in Study 1 extracted from
participant interviews.

ing and 23% giving a neutral response. This is well captured in the response ‘I have509

never had to interpret sounds visually, therefore I found it to be kind of a difficult510

but interesting task.’ (P2.70). This was echoed in interviews from Study 1 where some511

participants found it difficult to ‘think of sound in a very visual way’ (P1.8) (P1.16).512

However, for some, it became easier to visualise a sound once the task started, as513

one participant stated ‘I wasn’t really expecting to be able to visualize sound, but514

some of those frequencies were extremely clear to me, as far as how they looked in my515

brain.’ (P2.53). Participants who felt that the task was easy thought that ‘there was516

no right or wrong’ (P1.4), ‘it was just about being creative’ (P1.15), they did not have517

to ‘achieve something’ (P1.10), the setup ‘allowed the listener space to interpret all518

sorts of sound visually’ (P2.91) or simply found the task ‘interesting’ (P2.39, P2.41,519

P2.70, P2.83, P2.91) and ‘fun’ (P2.20, P2.33, P2.45). For Study 2, some criticized520

that the ‘sounds were very alike’ P(2.13) which made it ‘[...] hard to find an specifi-521

cally draw[ing] to each sound’ P(2.34). On the contrary, in Study 1 some participants522

struggled with the ‘great variety in the sounds’ (P1.2) which made it difficult to find523

a consistent approach. While some participants approached the task as an intuitive,524

creative activity, others were concerned with establishing a consistent visual language,525

difficulties arose while deciding which sound characteristics to follow because ‘there526

are too many things to consider’ like ‘brightness or aggressiveness or how it [timbre]527

develops over time’ (P1.6). Deploying a more systematic rather than intuitive ap-528

proach appeared more difficult with one participant who did not deviate from their529

initial concept finding themselves ‘going round in circles, and question how valid the530

whole approach is’ (P1.9). Some participants reported that ‘complicated ones [sounds]531

sounded like pictures, and then the simple ones [...] like piano notes were a lot harder532

to draw’ (P1.8) possibly because they ‘hear [them] all the time’ (P1.1), while other533

participants thought that ‘it’s pretty straightforward because I know a piano note more534

than others’ (P1.5). Most participants approached the task by listening to ‘the actual535

sonic qualities of them [the sounds]’ (P1.1) and representing them with ‘[...]abstract536

patterns, along with patterns that would come from what I thought the instruments537

were, and it was kind of a mixture of going back and forth between the two.’ P(1.5).538

Familiar sounds like the piano can influence participants to choose figurative represen-539

tations that include the sound-producing source. However, some participants adopted540

a figurative approach that does not pay attention to specific sound characteristics but541

rather extracts general information like an emotion from a sound and then depicts a542

scene or an object that fits this information. One participant explained their sketch543

which is shown in Figure 7 as follows: ‘I wanted to show the emotion in the sound like544

15



the sound was scary so I drew the forest with only one person inside it. If I think the545

sound is peaceful, I will draw the sea and the sun and the water.’ (P1.21). These two546

different approaches suggest that abstract representations are more strongly informed547

by sound-shape associations and figurative representations draw more strongly from548

an emotional response or personal memory.549

Figure 7.: A participant in Study 1 represented a sound that they perceived as ‘scary’
with a scene that represented that emotion.

4.2. Sketching interface550

Analysing responses for feedback about the interface interaction showed that for Study551

1, overall, participants were unsatisfied with the interface with twelve mentioning552

that they would prefer a pen (either digital or analogue) to be able to sketch more553

accurately. Six stated that they would have liked to utilise additional visual tools554

like colour, different strokes and textures. However, responses suggested that while555

the interface ‘could be more expressive [...] for the purpose it was expressive enough’556

(P1.5). The feedback led to the overhaul of the interface design for Study 2 described in557

Section 3.3.2. For Study 2, 70 and 75 participants responded with agree or completely558

agree to the questions I thought the drawing interface allowed me to be expressive and559

I thought the drawing interface was easy to use. Three participants still mentioned560

that they would like to add colours to the interface and one mentioned that the task561

‘would be easier to do on my phone’ (P2.85). A further three participants mentioned562

that they would like to increase or discard the stroke length limit.563

5. Sketch Categorisation564

From the interview analysis of Study 1 two broad representational approaches can be565

defined: an abstract approach that is guided at least in part by sound-shape associa-566

tions and a figurative approach that is strongly influenced by imagery. Sketch categori-567

sation for Study 1 focuses on further formalising these findings and investigating how568

participants could be guided towards abstract representations. Study 2 focuses on the569

influence of prominent sound characteristics on abstract representational categories.570
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5.1. Study 1: manual categorisation through card sorting571

As described in Section 3.6, sketches were categorised in an open card sorting study.572

Analysis of the responses returned an optimal number of five categories that were573

named: Chaotic/Jagged (172 sketches), Radiating/Round (126), Lines (120), Object-574

s/Scenes (86) and Grains (56). The results are visualised in Figure 8. Descriptive575

keywords and sketch examples for each category can be found in Table 1. A maxi-576

mal silhouette coefficient of 0.49 suggests that categories are distinguishable, but not577

clearly separated which is also reflected by occasionally overlapping keywords. The Ob-578

ject/Scenes category consists mainly of figurative representations while the remaining579

categories include mainly abstract representations. Chi-squared test suggests that non-580

musicians produce Objects/Scenes sketches more often (χ2(1,N=28)=22.51 p<.0001)581

while musicians produce Lines sketches at a higher rate (χ2(1,N=28)=7.5 p<.01)582

possibly because this category contains sketches that appear to reference audio visu-583

alisations like envelopes or waveforms. Category counts for Objects/Scenes sketches584

significantly differ between sounds (χ2(9)=67.07 p<.0001) with post-hoc analysis re-585

vealing that Piano and Impact show significantly higher counts than Noise, String586

Grains and Processed Guitar (p<.01 for each pair). A possible explanation is that587

Piano and Impact have an easily identifiable source that participants attempted to588

sketch rather than capturing sound characteristics directly. Noise and String Grains589

that show high values for the roughness audio feature (81 and 56) as displayed in Ta-590

ble A1 also have the largest share of sketches in the Chaotic/Jagged category. On the591

other hand, Subbass, Telephonic and Impact with high values for the warmth audio592

feature (65, 54 and 51) have the highest share of the Radiating/Round category. Inter-593

estingly, despite high values for warmth (54), Piano and Strings are more frequently594

represented with Lines sketches, possibly because they are comparably spectrally sim-595

ple sounds which is reflected by the low values for spectral flatness. However, it could596

also relate to auditory aspects such as pitch and loudness, as it is not feasible to eval-597

uate timbre independently from these attributes. Table 2 shows that Object/Scenes598

has the highest average number of sketch points and the second highest average num-599

ber of strokes. The highest number of strokes can be found in the Grains category600

which is most prevalent in the sounds Crackles and String Grains. However, with601

a low average number of points, this category appears to represent the intersecte-602

ness of sound quantified by the audio feature RMS slope with multiple short, simple603

structures. Chaotic/Jagged and Radiating have a similar average number of points604

as Object/Scenes, but a significantly lower number of average strokes. This analysis605

indicates that Object/Scenes sketches are more likely to be long and complex with606

multiple components which informed the interface development for Study 2 described607

in Section 3.3.2.608

5.2. Study 2: automated categorisation using machine learning609

As described in Section 3.6 the SketchRNN deep learning architecture was used to610

create a latent representation of the collected sound-sketches. Figure 10 shows a visu-611

alisation of the latent space and categorisation through cluster analysis. In contrast to612

Study 1, three clusters were determined to separate the data best, however, a silhouette613

score of 0.36 shows that large overlaps exist between them. Three major categories614

informed by the card sorting annotations from Study 1 were defined: Lines (610),615

Chaotic/Jagged (455 sketches), and Radiating/Round (694). The categories Objec-616

t/Scenes and Grains were no longer present in the dataset. This was expected as the617
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Figure 8.: Study 1 sound sketches organised by the K-Means clusters calculated from
the card-sorting study. Colours indicate the different clusters.

Figure 9.: Categories by sound stimulus in Study 1.

interface design discouraged Objects/Scenes sketches and Grains sketches were largely618

found in intersected sounds that were not included in the audio stimuli for Study 2.619

To compare differences in category distribution, six sound groups were created from620

sounds from the annotated attributes bright, rough and thick derived from the FM syn-621

thesiser sound dataset by Hayes and Saitis (2020) discussed in Section 2.2. Each group622

contains three sounds with either the highest or lowest value for an attribute. Further623

analysis showed that category counts for Chaotic/Jagged and Lines differ significantly624

between sound groups (χ2(5)=20.38 p<.01 and χ2(5)=34.29 p<.00001), but no signif-625

icant differences could be found for Radiating/Round (χ2(5)=9.59 p>.05). Post-hoc626

analysis showed prominent differences in category distribution between the most and627

least rough sounds as illustrated in Figure 11 supporting findings from Study 1 which628

showed that rough sounds were more frequently represented with chaotic, complex629

sketches and calmer, less rough sounds with simpler lines. Measurements for rough-630

ness which were extracted automatically with timbral model by Pearce et al. (2019)631

and presented in Table A1 were high for the rough sound group (70, 63 and 59 for632

Synth 9,13,19) and low for the not rough sound group (29,0,45 for Synth 1,11,14).633

This further supports the validity of these features as measurements relevant to hu-634

man perception.635
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Grains Lines
Object/

Scenes

Chaotic/

Jagged

Radiating/

Round

Small, repeated,

grainy, spots, mul-

tiple components,

layers, abstract,

distinct

round, soft, con-

tinuous, jagged,

irregular, simple,

single, lines

real-life objects,

environment, ac-

tions or feelings,

abstract structures

chaotic, intense,

jagged, multiple

layers, single

objects

round, circular,

spiral, sharp,

shaking, distinct

objects, radiating,

natural

Table 1.: Sketch categories with examples. Category names and keywords were ob-
tained through thematic analysis as described in Section 3.6. Objects/Scenes mainly
refers to real-world associations while other categories highlight different abstract ap-
proaches, but category clusters might overlap with a number of sketches showing
characteristics of more than one category. Colours were inverted for better visibility.

Grains Lines
Object/
Scenes

Chaotic/
Jagged

Radiating/
Round

Mean Std Mean Std Mean Std Mean Std Mean Std

Points 560 532 534 338 1068 557 1060 696 914 722
Strokes 14 12 2 2 13 9 7 10 4 4

Table 2.: Average number of points and strokes for each sketch category rounded to the
closest integer. Object/Scenes shows the highest number of points and second highest
number of strokes which implies that this category could be reduced when limiting
the size of a sketch.

6. Quantitative feature analysis636

This analysis was conducted with the aim of statistically investigating to what extent637

sound-shape associations emerge from sound-sketches. First, inter-rater reliability was638

determined to confirm sketch features used in this research can measure agreement639

between participants. This was followed by calculating correlations between individual640

audio and visual features. As discussed in Section 3.7, the interpretation of the results641

needs to consider that this analysis uses averaged values642

6.1. Inter-rater reliability643

The results of the ICC(2,k) inter-rater reliability measures are illustrated in Figure 14.644

For Study 1, reliability measures were good to excellent for Intersections and Acute645

Angles, poor to good for Average Speed and moderate to good for all remaining features646

within the 95% confidence interval (CI). For Study 2, measures were excellent for647

Acute Angles and good to excellent for Intersections, Wide Curves and Right Angles648

solidifying findings from Study 1 with higher reliability scores and narrower confidence649

intervals. In contrast to Study 1, Number of Strokes and Average Time only returned650
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Figure 10.: Study 2 sound sketches organised in the latent space that was reduced
to two dimensions with PCA. Colours indicate the different clusters found through
K-Means.

Figure 11.: Categories by sounds grouped by attributes in Study 2.

poor to moderate reliability which can be accredited to the sketch length limit of the651

interface. Average Speed however showed good to excellent reliability compared to poor652

to good in Study 1 implying that participants might have expressed characteristics653

through their sketching speed that would have been expressed through longer, more654

complex sketches with an unrestricted interface. This is supported by a larger variance655

in average sketching speed compared to Study 1 (SD = 0.23 compared to SD = 0.12).656

These results suggest that some level of agreement exists between averaged participants657

on how to represent sounds visually and that it can be measured with the extracted658

sketch features.659

6.2. Feature correlation660

Several significant correlations were found between sketch and audio features in both661

studies illustrated in Figure 13. For Study 1, Acute Angles (11), Intersections (9) and662

Number of Strokes (8) show the highest statistically significant (p<.05) number of663

strong (r>.6) and very strong (r>.8) correlations with audio features. The strongest664

correlation overall was found between RMS Mean and Average Time (r=.95, p<.001).665

Opposing audio features like Warmth and Sharpness showed similar absolute corre-666
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(a) Study 1 (b) Study 2

Figure 12.: Mean values and 95% CI of ICC(2,k) inter-rater reliabilities for each sketch
feature with evaluation guidelines proposed by Koo and Li (2016) (df1=19, df2=513,
p<.01 for all features).

lation values but opposite directions for Number of Strokes, Intersections and Acute667

Angles. For Study 2, Wide Curves (9), Intersections (7) and Acute Angles (3) show the668

highest statistically significant (p<.05) number of strong (r>.6) and very strong (r>.8)669

correlations with audio features. The strongest correlation overall was found between670

Intersections and Hardness (r=.81, p<.001). While only 12 strong and very strong671

correlations were found compared to 19 in Study 1, more results were significant at672

p<.05 level (49 compared to 37). Similar trends can be observed between both studies673

with Acute Angles and Intersections showing negative correlations with audio features674

Boominess, Warmth and Depth and positive correlations with Roughness, Brightness675

and Hardness. Average Speed shows similar correlations to Number of Strokes in Study676

1 for example with Hardness and Boominess further supporting the hypothesis that677

sketching speed compensated for the sketch length restrictions. In contrast to Study 1,678

Wide Curves shows a large number of significant correlations with audio features that679

are mirroring Acute Angles correlations as expected from known sound-shape associ-680

ations. As all sound stimuli were created with the same amplitude envelope in Study681

2 the features RMS Slope and RMS Mean did not provide distinguishing descriptions682

and consequently did not show any significant correlations with sketch features.683

7. Discussion684

7.1. Abstract and figurative representations of sound stimuli685

The sound-sketches collected in this research were categorised through a rigorous,686

human-centred process consisting of participant interviews and a card-sorting study.687

On the highest level, sound-sketches were divided into two groups: abstract and688

figurative. Abstract representations appear to be strongly informed by cross-modal689

associations and show many similarities to visual stimuli used in matching tasks.690

Figurative representations, on the other hand, depict objects or scenes associated with691

a sound that may depict the sound source directly, for example in form of a musical692

instrument, or may be informed by an emotional response or memory, for example, a693

sound perceived as scary might be represented with a scene similar to the sketch in694

Figure 7 that is informed by the memory of a movie scene that corresponds to that695

emotion. Which representational approach a participant took was influenced by the696
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(a) Study 1 (b) Study 2

Figure 13.: Spearman’s rank correlation coefficients between sketch and audio features
with annotated p-values: p<.05 (*), .01 (**), .001 (***)

sound type or a participant’s experience. Figurative representations were found to be697

more prevalent among non-musicians and for sounds with an easily identifiable sound698

source like a musical instrument. This could be interpreted as a difference in listening699

modes: coined by Schaeffer (2017) and further explored by Chion (2019), the reduced700

listening mode describes a focus on the sound itself as opposed to semantic listening701

which focuses on the source or meaning of a sound. Described as hardly natural702

by Chion (2019), reduced listening can be more demanding for the untrained ear,703

especially for sounds from a familiar source. This analysis suggests that two different704

approaches would be needed when computationally mapping sketches to sound. For705

abstract sketches that encode information about sound characteristics directly in their706

form, extracting quantitative sketch features like the ones described in Section 3.7707

appears to be a viable approach. For figurative sketches, a more suitable approach708

might have to include object recognition for sketches of musical instruments and709

other sound-producing objects or sentiment analysis for emotionally informed scenes.710

711

Section 6 shows that for Study 1 multiple significant correlations were found712

between audio and sketch features despite including abstract and figurative sketches.713

With 84% of sketches classified as abstract, figurative sketches did not appear to714

impact these correlations. Because of the small sample size, differences in correlations715

between abstract and figurative sketches could not be investigated in a meaningful716

way. Figurative representations might still be indirectly influenced by cross-modal717

associations, for example, an uncomfortable noisy and dissonant sound might be718

represented with a scene similar to the design Landscape of Thorns by Moisey719

(2017) that aims to communicate discomfort and danger through sharp and jagged720

structures. On the other hand, abstract representations might include references to721

symbolic representations of sound that are not based on cross-modal associations.722

The feedback analysis in Section 4 reveals that some sketches, in particular in the723

Lines category, are informed by audio representations like waveforms, spectrograms724

or amplitude envelopes.725

726

As described in Section 2.1, cross-modal associations are not fixed; they emerge in727

different forms depending on the stimulus and situation and sketch representations728
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might incorporate multiple associations or references to objects, scenes or symbols.729

Without explicitly asking a participant what they had in mind, it may not be730

possible to exactly determine their underlying motivation. Generally, only a few731

participants strictly adhered to one representational approach. While dominated by732

a primary approach, most participants switched between or mixed representational733

styles throughout the sketching task.734

7.2. Cross-modal associations in free-form sketches735

Compared to the figurative category Object/Scenes the abstract categories Chaotic/-736

Jagged,Grains,Lines and Radiating/Rounds appear to be primarily influenced by cross-737

modal associations. This research aimed to investigate sound-shape associations specif-738

ically, but it might be useful to define the terminology to better interpret the results.739

The visual stimuli used in sound-shape matching tasks like Adeli et al. (2014) focus740

very strictly on shape meaning that stimuli only show the outlining form through a741

non-intersecting connected series of lines. Looking at Figures 8 and 10 it is obvious742

that participants did not only use form in their abstract sketches. Knees and Ander-743

sen (2016) made similar findings and, in their sound-sketch prototype, included tools744

to create outlines of simple forms like circles and triangles that can be given more745

complexity through free-form lines and filled with textures.746

(a) Synth 11 (b) Synth 13

Figure 14.: Sound-sketches taken from Study 2 for the stimuli Synth 11, characterized
by high values for Warmth and low values for Roughness and Spectral Flatness, and
Synth 13, which exhibits contrasting values for these attributes. There is a difference
in form, with Synth 11 more frequently depicted as Radiating/Round and Synth 13
as Chaotic/Jagged in sketches. In addition, Synth 11 tends to be represented by less
complex sketches that fall into the Lines category.

In this research, the abstract categories Chaotic/Jagged and Radiating/Round747

appear to encode sound characteristics through their form with the latter found748

more frequently for warm sounds in Study 1 and the former for rough sounds in749

both studies which aligns with existing sound-shape research (Köhler, 1929; Adeli et750

al., 2014). However, Chaotic/Jagged appears to be also contrasted by Lines which751

is more frequently found in the least rough sounds. Sketches in the Lines category752

have considerably fewer sharp angles than sketches in Chaotic/Jagged which could753

be interpreted as a difference in form, but Lines also exhibits considerably fewer754

stroke intersections than Chaotic/Jagged which can be interpreted as a difference in755

complexity. The remaining abstract category Grains was particularly prevalent for the756
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intersected sounds Crackles and String Grains in Study 1 and is described to consist757

of small, repetitive components which can be interpreted as texture and was quantified758

by the average number of strokes and the average stroke length. Strictly speaking,759

sound-shape associations are not the only cross-modal associations that influence760

abstract representations, however, in this context, the definition of shape could be761

extended to describe any 2-dimensional structure composed of straight or curved762

lines. For quantitative analysis, this broader definition of shape might be sufficient as763

the sketch features described in Section 3.7 capture more than just the form of a sketch.764

765

The results of the feature correlation analysis in Section 6.2 support that typi-766

cal sound-shape associations influenced sketch representations with acute angles767

positively correlating with attributes like Sharpness, Roughness and Brightness and768

negatively with Warmth and Boominess. The sketch feature Wide Curves which was769

expected to quantify roundness did not show any significant correlations in Study 1,770

but multiple significant correlations for Study 2 that point in the opposite direction771

of acute angles. This might be due to noise introduced by higher variance in sketch772

approaches in Study 1 but could suggest that the extracted features are not a good773

measure for the overall roundness of a sketch. Intersections proved to be meaningful774

in describing cross-modal associations showing multiple significant correlations with775

audio features across both studies. The direction of these correlations is the same776

for acute angles, leading to the belief that the opposing pairs rough and soft for777

sound might not only be visualised through jaggedness or roundness but also through778

complexity and simplicity. Overall, the roughness of a sound appears to have a strong779

influence on how sketches are represented which is clearly visualised in Figure 11.780

The figure also suggests that the Lines category is more prevalent for thin sounds,781

but the differences found in this study did not prove to be significant. As the sketch782

and audio features do not directly quantify thinness, feature correlation could not783

provide any additional information. Further work could focus on this attribute of784

sound which would provide an additional timbral dimension encoded in sound-sketch785

representations.786

787

A general problem that emerged in both studies is that it cannot be clearly788

determined which sound characteristic participants focused on. As a participant789

in Study 1 stated, there are a lot of different aspects of sound and it is difficult790

to represent them all in a simple sketch. This might be made even more difficult791

with the sketch length limit that was introduced in Study 2. While it succeeded792

in guiding participants to represent sounds in more abstract ways, it does prevent793

them from elaborating or overlaying multiple approaches that might capture more794

aspects of a sound. It might be possible that thinness or thickness can be encoded795

through sketching, but participants mainly focused on roughness when representing796

sound. For future research, it could be considered to also ask participants to rate797

which attributes of the sound they focused on with a design similar to Hayes et798

al. (2021). An alternative method might involve prompting participants to envision799

a sound possessing specific attributes instead of exposing them to an actual au-800

ditory stimulus. This approach was employed during the test session in Study 2,801

where participants were tasked with sketching a noisy and calm sound. However,802

understanding how participants mentally conceptualize a sound remains somewhat803

ambiguous, particularly considering that certain common auditory descriptors, such804

as ”sharpness“ or ”roundness“ may inherently include visual elements. In addition to805

verbal feedback, allowing participants to select a sound that most accurately captures806
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their mental representation of a descriptor could offer valuable insights into their807

attribute assignments.808

7.3. Implications for development of a sketch-based sound synthesiser809

Study 2 was designed with a future implementation of a sketch-based sound synthesiser810

in mind. The results can shed light on which mapping architecture is more appropriate811

for such a system:812

• a regression approach where a change in timbre is induced by an incremental813

change in the corresponding sketch feature. For example, a sound would become814

noisier with an increase in sharp angles.815

• a classification approach where the overall timbre category is determined. In this816

scenario, a sketch could represent multiple categories for example either rough817

or soft in combination with either thick or thin.818

The feature correlations in Section 6.2 describe a monotonic relationship between819

audio and sketch features which can lead to the conclusion that a gradual increase in820

an audio feature like roughness coincides with a gradual increase in a sketch feature821

like acute angles. However, it has to be remembered that these sketch features rep-822

resent the average sketch of the participants meaning that a single participant might823

not follow a change of timbre in such an incremental fashion. Rather participants824

could think of sounds in categories and with rising roughness, an increasing number of825

participants switch from round to jagged shapes. Similarly, statistical agreement for826

sketch representations was only determined for an average participant in Section 6.1827

and, in this research, significant results could not be obtained when looking at individ-828

ual participants. In addition, if a specific, computed audio feature increases linearly829

for a series of sounds, it does not mean that humans would perceive this as a linear830

change in timbre. When thinking about a sound that is neither particularly rough831

nor soft, it is likely that another more prominent feature, for example, thick or thin832

would inform the perception of this sound and hence the sketch representation of it. In833

fact, Hayes et al. (2022b) found that relatively small, localised clusters emerge when834

participants were asked to define sound within a timbre space according to descriptors835

like rough or soft. A linear interpolation between the parameters of two FM synthe-836

siser sounds might not be perceived as a linear transition in sound characteristics, but837

rather different sound environments that emerge along this path. Given this analysis,838

a categorisation approach appears to be more viable when designing a sketch-based839

sound synthesiser. It should also be added that sketch to synthesiser mappings do not840

have to be limited to timbre. An advantage of this design is that multiple parameters841

can be represented with a single input. Revisiting the research of Salgado-Montejo842

et al. (2016) and M. B. Küssner et al. (2014) shows that sketch representations can843

also serve to represent pitch or amplitude envelopes. Future work can explore how a844

sketch input could manipulate these parameters at the same time, potentially using a845

combination of mappings that are established through a data-driven machine learning846

approach and hard-coded mappings that are based on findings from empirical stud-847

ies. Given that colour and visual texture have been identified as common associations848

with timbre in previous studies (Ward et al., 2006; Adeli et al., 2014; Gurman et al.,849

2021; Grill & Flexer, 2012), the exploration of polychromatic colour palettes, different850

stroke widths and brush styles could be considered in further development to facilitate851

multi-dimensional mappings.852
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8. Conclusion853

In two participant studies, 2320 free-form sound-sketches (560 from Study 1 and 1760854

from Study 2) were collected with simple, monochromatic digital sketching interfaces.855

Through a rigorous human-centred analysis sketches were categorised by their primary856

representational approach. Several significant correlations between quantitative audio857

and sketch features were found that align with findings from cross-modal matching858

tasks. The results show that while sound-shape associations play a significant role859

in sketched representations, humans incorporate other visual aspects like structural860

complexity or texture as well or choose figurative representations of emotions or sound-861

producing objects. Some level of agreement on how to represent sounds could be862

found between participants which appears strongest for sounds that are dominated863

by one sound characteristic. This research provides useful insights and suggestions for864

designing a sketch-based sound synthesiser.865
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Appendix A. Sound and sketch feature extraction1109

Table A1 shows the values of extracted audio features for Study 1 and Study 2.1110

Table A2 show the values of extracted sketch features for Study 1 and Study 2.1111
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Flatness
Mean

Centroid
Mean

RMS
Mean

RMS
Slope

Zero
Cross.
Mean

Hard-
ness

Depth Bright-
ness

Rough-
ness

Warmth Sharp-
ness

Boomi-
ness

Crackles 4.1 ∗
10−2

1728 0.032 21 0.035 55 28 60 52 41 48 17

Telephonic 1.0 ∗
10−3

543 0.157 5 0.013 34 67 43 50 54 28 41

Strings 3.9 ∗
10−5

1042 0.151 10 0.020 42 57 52 52 54 35 33

String Grains 1.9 ∗
10−3

1177 0.107 22 0.031 52 40 56 56 49 37 25

Subbass 1.5 ∗
10−8

206 0.416 1 0.002 34 77 36 47 65 34 47

Noise 2.9 ∗
10−1

7915 0.086 34 0.144 81 44 81 81 29 68 22

Piano 4.5 ∗
10−7

542 0.051 1 0.013 42 65 49 40 54 31 42

Impact 2.8 ∗
10−4

1047 0.097 8 0.011 65 77 60 49 51 49 39

Processed Guitar 1.7 ∗
10−3

229 0.344 3 0.002 30 80 39 40 63 37 46

Electric Guitar 4.5 ∗
10−6

1295 0.305 5 0.022 47 56 56 56 50 42 34

(a) Study 1

Flatness
Mean

Centroid
Mean

RMS
Mean

RMS
Slope

Zero
Cross.
Mean

Hard-
ness

Depth Bright-
ness

Rough-
ness

Warmth Sharp-
ness

Boomi-
ness

Synth 1 4.9 ∗
10−8

562 0.0429 0 0.0199 34 42 39 29 39 29 21

Synth 2 1.4 ∗
10−7

794 0.0614 0 0.0239 52 65 54 53 50 37 34

Synth 3 3.8 ∗
10−5

2889 0.0266 0 0.113 67 42 75 72 30 61 9

Synth 4 5.5 ∗
10−3

9670 0.0529 0 0.437 73 31 86 83 17 77 -6

Synth 5 1.6 ∗
10−8

247 0.0731 0 0.01 32 68 30 41 53 25 43

Synth 6 5.9 ∗
10−3

8607 0.0374 0 0.355 76 34 84 77 20 76 12

Synth 7 6.0 ∗
10−6

2671 0.116 0 0.11 64 43 75 72 31 59 13

Synth 8 2.7 ∗
10−6

327 0.0893 0 0.0116 11 62 30 42 48 23 40

Synth 9 8.4 ∗
10−7

1693 0.104 0 0.0583 63 46 67 70 39 48 25

Synth 10 5.9 ∗
10−7

1259 0.057 0 0.0511 48 45 65 68 40 40 23

Synth 11 1.5 ∗
10−7

259 0.1 0 0.00995 3 64 27 0 56 26 44

Synth 12 3.5 ∗
10−5

5493 0.0577 0 0.192 50 33 79 57 20 72 4

Synth 13 7.8 ∗
10−4

8715 0.0539 0 0.357 61 30 84 63 31 80 25

Synth 14 4.7 ∗
10−8

432 0.0466 0 0.0157 33 55 36 45 46 25 32

Synth 15 1.8 ∗
10−7

515 0.0578 0 0.0194 39 61 46 56 52 29 33

Synth 16 1.5 ∗
10−5

2768 0.0521 0 0.121 55 37 73 56 30 62 4

Synth 17 9.6 ∗
10−3

9683 0.124 0 0.416 77 38 86 82 17 76 -1

Synth 18 4.1 ∗
10−8

613 0.0758 0 0.0187 35 56 48 51 45 30 33

Synth 19 8.2 ∗
10−7

569 0.0574 0 0.02 54 60 48 59 52 29 33

Synth 20 2.6 ∗
10−3

6691 0.0564 0 0.259 69 25 82 65 25 74 15

(b) Study 2

Table A1.: Sound features extracted from sound stimuli of both studies. For Librosa
features, the mean values of all windows are reported.32



Number
of

Strokes

Average
Length

[px]

Average
Time
[ms]

Average
Speed

[px/ms]

Inter-
sections
[1/100px]

Narrow
Curves

[1/100px]

Wide
Curves

[1/100px]

Obtuse
Angles

[1/100px]

Right
Angles

[1/100px]

Acute
Angles

[1/100px]

Crackles 10.5 471 2796 0.22 1.78 0.55 0.60 0.94 0.22 0.67
Telephonic 6.0 1091 4613 0.27 1.05 0.16 0.37 0.55 0.08 0.26
Strings 3.9 900 4379 0.26 0.31 0.10 0.23 0.28 0.06 0.09
String Grains 10.1 914 3340 0.28 1.48 0.24 0.21 0.58 0.15 0.54
Subbass 4.5 1328 6154 0.23 0.92 0.17 0.43 0.51 0.08 0.30
Noise 12.8 1816 3540 0.57 2.37 0.32 0.22 0.61 0.16 0.56
Piano 3.8 586 3020 0.29 0.61 0.06 0.31 0.20 0.02 0.06
Impact 7.2 1239 3313 0.51 1.12 0.14 0.28 0.24 0.05 0.31
Processed Guitar 4.3 1124 4707 0.33 0.43 0.17 0.23 0.49 0.09 0.22
Electric Guitar 5.3 1121 4561 0.33 0.93 0.12 0.12 0.35 0.08 0.40

(a) Study 1

Number
of

Strokes

Average
Length

[px]

Average
Time
[ms]

Average
Speed

[px/ms]

Inter-
sections
[1/100px]

Narrow
Curves

[1/100px]

Wide
Curves

[1/100px]

Obtuse
Angles

[1/100px]

Right
Angles

[1/100px]

Acute
Angles

[1/100px]

Synth 1 3.4 1002 3021 0.44 1.8 0.3 0.84 1.1 0.13 0.31
Synth 2 3.1 876 2923 0.4 2.6 0.55 0.96 1.1 0.24 0.53
Synth 3 2.9 1186 3274 0.46 2.0 0.42 0.88 1.1 0.079 1.2
Synth 4 3.9 2125 3178 0.74 5.4 0.32 0.39 0.86 0.23 1.4
Synth 5 3.0 1636 3239 0.53 1.2 0.9 1.2 1.7 0.53 0.62
Synth 6 4.3 1444 3344 0.49 3.7 0.75 0.67 1.4 0.19 1.6
Synth 7 3.9 3644 2725 1.2 5.8 0.5 0.54 1.0 0.19 1.5
Synth 8 2.03 936 3666 0.31 0.74 0.37 0.84 0.58 0.096 0.21
Synth 9 5.2 1815 2752 0.79 5.7 0.42 0.98 0.95 0.19 0.7
Synth 10 3.9 1555 3008 0.56 2.2 0.45 1.0 1.6 0.18 0.48
Synth 11 2.1 834 3682 0.27 0.6 0.19 1.0 0.92 0.082 0.12
Synth 12 2.6 1352 3533 0.46 2.9 0.34 0.61 0.68 0.12 0.63
Synth 13 3.8 1239 3125 0.48 3.2 0.41 0.68 0.81 0.14 0.6
Synth 14 2.5 995 3181 0.37 0.97 0.5 0.9 0.78 0.045 0.2
Synth 15 2.8 1543 2984 0.55 3.3 0.62 0.74 1.5 0.31 1.4
Synth 16 2.7 1104 2816 0.48 3.1 0.63 0.78 1.1 0.18 0.72
Synth 17 2.3 3055 3171 1.1 6.4 0.34 0.24 0.58 0.15 1.2
Synth 18 2.6 1269 3555 0.39 2.0 0.35 0.68 0.72 0.11 0.34
Synth 19 3.3 1854 3279 0.54 3.8 0.83 0.89 1.6 0.31 1.4
Synth 20 4.1 1993 2961 0.67 3.2 0.26 0.54 0.71 0.12 0.59

(b) Study 2

Table A2.: Sketch features for both studies. The mean value from all participants is
presented for each sound stimulus.
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